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Abstract—Studies of DEM error have consistently found a link 
between terrain characteristics such as slope shape or steepness and 
error. This link is explored by looking at error in relation to 
various geomorphometric measures for a study area in Scotland. 
The magnitude of error is found to vary systematically between 
convex, planar and convex areas and measures of terrain roughness 
show some degree of correlation with error. These results suggest 
that it may be possible to produce better models of DEM error 
which are based on the nature of the terrain instead of the usual 
assumption that DEM error has the same characteristics across the 
DEM. 

 INTRODUCTION 
There is a growing body of literature on the subject of errors 

in Digital Terrain Models [2] which can be broadly split into two 
areas. First there is the study of the nature and causes of error 
itself and secondly the study of how these errors propagate 
through into the analytical use of the DEM. It is unsurprising that 
the nature of the terrain which is being measured and modelled 
has an influence in both. The purpose of this paper is to present a 
brief overview of the link between terrain characteristics and 
DEM error and then to present some results which illustrate the 
potential of geomorphometry in the modeling of DEM Error 

A distinction can be made between errors in the height values 
in a DEM and errors which arise when the DEM is used for 
analysis. In some cases the analysis makes direct use of the 
elevation values and so the two are the same. However the 
majority of DEM analysis use the elevation values to derive other 
measures or outputs and so the propagation of errors becomes an 
issue. Here a further distinction can be made between measures 
which are based on the elevation values immediately 
neighbouring a point, such as gradient, aspect and flow direction , 
and those in which the results depend on values from a wider 
area such as flow accumulation, watersheds and viewsheds. For 
the first category it is possible to derive analytical results for 
error propagation by making assumptions about the nature of the 
initial elevation error [3], [11] and indeed some authors [3] argue 

that this is the best approach. However empirical studies still 
have a value and these have repeatedly shown that there is a link 
between the nature of the error in slope derivatives and the nature 
of the terrain. For the second category an analytical approach 
would be much more difficult and so studies have all been 
empirical in nature. 

To date the majority of studies have focused on bare-earth 
DTMs often derived from field measurements or maps. The 
effect of topography on DSMs derived from Remote Sensing is 
likely to be somewhat different. For instance in the case of 
LiDAR, it was found [6] that it is the nature of the surface cover 
which is important rather than the nature of the topographic 
surface. Because of this the current paper will only consider bare 
earth DEMs 

One common approach is to compare results from areas of 
upland and lowland topography [4] but some have examined the 
relationship between specific topographic measures such as 
gradient and surface roughness and error [1]. For instance in the 
case of elevation and slope gradient it has generally been found 
that errors are greater in upland areas and on steeper slopes. 

It is suggested here that the nature of the terrain could play an 
even more central role in understanding DEM error. A long 
standing requirement is to be able to understand and model the 
spatial pattern of DEM error. One area where this is key is in 
Monte Carlo simulation of error propagation in which the error is 
usually modelled by as a spatially autocorrelated Gaussian field 
[5]. This assumes that error has the same characteristics 
everywhere even though it is well known that this is not the case. 
However if the link between the geomorphometry of a landscape 
and DEM error can be better understood then this opens up the 
possibility of more realistic models of DEM error which vary 
spatially and are based on the nature of the terrain surface itself 

DTM ERROR AND TERRAIN SHAPE 
The work makes use of a technique for producing a large 

sample of interpolation error values in which an existing DTM is 
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resampled to a lower resolution and then re-interpolated back to 
the original resolution [9]. At the points which were dropped in 
the resampling process there is an estimate of interpolation error 
and since there is a large number of these, evenly distributed 
across the DTM, this allows a detailed analysis of the link 
between terrain characteristics and DTM error [9]. The method 
was applied to a portion of the British Ordnance Survey 50m 
PANORAMA DEM for a 50km squared area in Scotland which 
contained topographies ranging from mountains to a flat coastal 
plain. The DEM was resampled to data spacings ranging from 
100m to 1600m and two different interpolation methods used to 
re-interpolate back to 50m: Inverse Distance Weighting (ID) and 
a Radial Basis Function Spline (RS). The methods were 
deliberately selected to represent interpolation methods which 
were thought to represent the range from poor (ID) to good (RS) 

The results from earlier work [8] suggested that error might 
have different characteristics in convex, concave and planar 
parts of the landscape. In order to test this, Landserf [10] was 
used to classify the terrain according to its shape. Landserf 
works by fitting a polynomial surface to the elevations within a 
window around a point in a Digital Elevation Model (DEM) and 
then classifying the points based on the shape of this surface. 
For instance if the surface is concave in all directions then the 
point is the lowest point within the window and is classified as a 
pit. Valleys are pixels in which the surface is concave in 
direction (across the valley) and planar in the perpendicular 
direction (down the valley) and in all Landserf has six classes as 
shown in Table I 

The size of the window can be varied and this affects the 
scale over which the landscape is classified. With a window size 
of 21x21 (Fig 1) the effective spatial scale of the features is 
1000m, the distance between the outermost data points. The 
classification was also run at scales of 100m, 500m,  1500m and 
2500m 

TABLE I.  LANDSERF CLASSES 

Number Landform class Colour 
1 Pit Black 
2 Channel Blue 
3 Pass Green 
4 Ridge Yellow 
5 Peak Red 
6 Plane Grey 

 
. 

 
Figure 1.  Landserf classification at three of the window sizes used.– the colours 

are as listed in Table 1 

The DEM error points were then classified according to 
which landform they fell in and then ANOVA was used to test 
whether there was a systematic difference between the error 
values for each class. To see how the results varied with the 
scale of the landscape classification this analysis was carried out 
on a DEM produced by Bilinear Interpolation data points 800m 
apart (Table II). The results show that the degree of separation is 
very strong indeed. The tests all have p values which are less 
than 0.0001. The greatest separation is when the landscape is 
classified at a scale of 1000m, which as Fig. 1 shows is when the 
classification distinguishes the major valleys and ridges in this 
particular landscape. Figure 2 shows the means and 95% 
confidence intervals for this case and as can be seen there is 
clear separation between all 6 classes. The mean error values are 
negative for the convex landform classes (peaks and ridges, 
positive for the concave ones (pits and valleys) and close to zero 
for planar slopes and passes. 

TABLE II.   ANOVA F STATISTICS FOR DIFFERENT WINDOW SIZES IN 
LANDSERF 

 Window size (m) 
100 500 1000 1500 2500 

F statistic 17381 61630 65214 42214 13472 
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Figure 2.  Means and 95% confidence intervals of elevation error by landserf 

class 

The analysis was then repeated for DEMs produced by both 
methods from data points resampled to spacings ranging from 
100m to 1600m, using the landserf classes produced at a scale of 
1000m. The results of the ANOVA tests (Table III) indicate that 
the degree of separation between the landform classes, as 
expressed by the F statistic,  tends to increase as the density of 
the original data points falls. This seems intuitively reasonable 
since as the data density falls, the ability of the interpolated 
surface to capture the shape of the true surface will diminish and 
in a way which will depend on just how concave or concave the 
real surface is. It is also interesting to note that the spline method 
clearly does a better job of modelling the shape of the surface in 
the case of data spacings below 800m. The F values are still 
statistically significant, but they are much smaller than for ID.  

The area was subdivided into 256 contiguous 3km x 3km 
zones, and the analysis repeated separately for each, to see 
whether the degree of separation of error between landform 
classes varied systematically by terrain type. The F values varied 
between 12.5 and 2471 but the values did not appear to show 
any systematic pattern spatially and there was no correlation 
between the F value and measures of terrain roughness such as 
mean slope and standard deviation of slope. 

TABLE III.  ANOVA F STATISTICS FOR DEMS CREATED FROM DATA OF 
VARYING DENSITY 

Interpolation Spacing of source data points (m) 
100 200 400 800 1600 

ID 13962 33474 64388 65844 48220 
RS 213 538 2138 28138 43125 

DEM ERROR AND TERRAIN ROUGHNESS 
A measure which extends the analysis beyond simply a 

classification into convex and concave is the Difference from 
Mean Elevation (DFME) which is the difference between 
elevation at a point and mean elevation within a defined distance 
around that point [7]. Positive values indicate a point which is 
higher than the local area and negative a point which is lower. 
This can also be thought of as a simple measure of the roughness 
of the terrain, for which the more commonly used measure is the 
standard deviation of slope (STDslope). 

For both these measures a decision has to be made about the 
size of the window to use in their caclulation. The measures 
were calculated using a range of window sizes, as shown in 
Table IV and then the values correlated with elevation error for 
each DEM point. The results for DFME correspond very closely 
with those from Landserf in that the maximum value of the 
correlation coefficient occur when the terrain measure is 
calculated over a scale of about 1km. For STDslope the window 
size makes little difference and so a window of 1000m was used 
for comparability with the other measures. 

The results (Table V) show that for both measures the link 
between roughness and DEM error becomes stronger as the 
density of the data points used in the DEM creation falls. 
Similarly the influence of terrain shape is strongest with the 
linear interpolation methods (ID) and less strong with the spline 
method. In fact when the spacing of the input data points is 
400m or below for the spline method there is no correlation at 
all. Of the two measures DFME appears to have a stronger 
correlation with error which is possibly surprising since 
STDslope seems to be a more comprehensive measure of surface 
roughness. Finally, as with Landserf,  repeating the analysis for 
the 256 sub-areas showed no link between the strength of the 
relationship and terrain roughness. 

TABLE IV.  PEARSON COEFFICIENT OF VARIATION FOR RELATIONSHIP 
BETWEEN TERRAIN MEASURES AND ELEVATION ERROR AT VARYING WINDOW 

SIZES 

Terrain 
Measure 

Window size (m) 
100 500 1000 1500 2500 

DFME 0.00 0.53 0.71 0.72 0.61 
STDslope 0.27 0.37 0.34 0.31 0.28 
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TABLE V.  PEARSON COEFFICIENT OF VARIATION FOR RELATIONSHIP 
BETWEEN TERRAIN MEASURES AND ELEVATION ERROR 

Terrain 
measure 

Interpolation Spacing of source data points 
(m) 

100 200 400 800 1600 
DFME ID 0.58 0.86 0.89 0.65 0.68 
 RS 0.01 0.01 0.20 0.44 0.41 
Roughness ID 0.22 0.30 0.35 0.36 0.33 

 RS 0.11 0.17 0.23 0.26 0.30 
 

CONCLUSION 
 

These initial experiments suggest that it may be possible to 
to improve the models of DEM error used in the analysis of 
error propagation by moving away from a single measure 
applied across the whole DEM to one which varies according to 
the underlying terrain. A simple classification into convex, 
concave and planar areas showed that elevation errors were 
systematically different between the three areas. 

DFME shows some promise as a per-pixel measure which 
correlates well with error in some cases which might allow 
elevation error to be modelled for each pixel. However DFME is 
less good when data density is high, especially with DEMs 
created using spline interpolation and other measure of terrain 
characteristics need to be explored as alternatives. Interestingly 
the more commonly used STDslope measure correlated quite 
poorly with error in most cases. 

Further work is needed to see whether these results can be 
replicated in other terrain types and to see whether the link 
between the geomorphometric measures and DEM error can be 
calibrated to produce useful estimates of DEM error. 

ACKNOWLEDGMENT 
This work made use of the 1Whitebox GIS, a free GIS with a 

strong focus on terrain analysis. The PANORAMA DEM was 
provided by the Edina Digimap service and remains Crown 
Copyright. 

REFERENCES 
[1] Chang, K. and B. Tsai (1991). "The effect of DEM resolution on 
slope and aspect mapping." Cartography and Geographic Information 
Systems 18(1): 69-77. 

                                                             
1http://www.uoguelph.ca/~hydrogeo/Whitebox/index.html  

[2] Fisher, P. E. and N. J. Tate (2006). "Causes and consequences of 
error in digital elevation models." Progress in Physical Geography 30(4): 
467-489. 
[3] Florinsky, I. V. (1998). "Accuracy of local topographic variables 
derived from digital elevation models." International Journal of 
Geographical Information Science 12(1): 47-61. 
[4] Gong, J. Li, Z. Zhu, Q. Sui, H and Zhou, Y. (2000). "Effects of 
various factors on the accuracy of DEMs: An intensive experimental 
investigation." Photogrammetric Engineering and Remote Sensing 66(9): 
1113-1117. 
[5] Hunter, G. J. and M. F. Goodchild (1997). "Modeling the uncertainty 
of slope and aspect estimates derived from spatial databases." Geographical 
Analysis 29(1): 35-49. 
[6] Leigh, C. L., D. B. Kidner and Thomas M.C. (2009). “The Use of 
LiDAR in Digital Surface Modelling: Issues and Errors”. Transactions in 
GIS 13(4): 345-361. 
[7] Wilson J P, Gallant J C (2010) Terrain Analysis: Principles and 
Applications. Wiley, New York. 
[8] Wise, S. M. (2007). "Effect of differing DEM creation methods on 
the results from a hydrological model." Computers and Geosciences 33(10): 
1351-1365. 
[9] Wise S.M. (2011). Cross-validation as a means of investigating DEM 
interpolation error. Computers and Geosciences. In Press. 
[10] Wood, J. (2006) Geomorphometry in Landserf. In: Hengl, T., Reuter, 
H. (Eds) Geomorphometry: Concepts. Software and Applications. Reuter, 
Amsterdam, 333-350. 
[11] Zhou, Q. M. and X. J. Liu (2004). "Error analysis on grid-based slope 
and aspect algorithms." Photogrammetric Engineering and Remote Sensing 
70(8): 957-962. 

 
. 
 
 

http://www.uoguelph.ca/~hydrogeo/Whitebox/index.html

