Extraction and Analysis of Slope, Slope Length, and LS for National Soil Erosion Inventory in China

Yang, Q. K., Wang, C. M., Guo, M. H., Zhao, M. D., Wang, L., Liu, Y. M., Li, R.
(1. College of Urban and Environment, Northwest University, Xi’an, Shaanxi, China; 2. Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China)

Abstract—In order to meet the demand of topographic parameters for national soil erosion inventory and mapping, hydrologically correct DEMs (Hc-DEMs in short) with 25m resolution for China have been generated with more than 21000 map sheets of 1:50,000 topographic maps (using contours, spot heights, and part of the streams), primary topographic parameters, including slope, slope length (distributed watershed slope length), and aspect, have been extracted, then a compound parameter, slope length factor (LS), has been calculated based on the fundamental principles of soil erosion and geomorphometry. All the parameters have been analysis, and the results showed that: (1) DEMs representing the terrain shape accurately and correctly, with some preprocessing, and following certain procedures, are base and prerequisite for the extracting of slope, distributed watershed slope length, aspect and calculating of LS (figure 1). (2) Hc-DEMs with 25m resolution generated in this project represent the topographical features of the country, and the parameters, including slope degree, distributed watershed slope length, and aspect, are consistent with general principles and regular understanding of erosional geomorphology (figure 2). (3) It is possible for all the parameters to be extracted and calculated based on the DEM with standard quadrangle DEM datasets (1.5º×1.0º of 1:250,000). But the DEM must be extended the boundary out for some distance for extracting of distributed watershed slope length; the distances at least are 3.8 km and 2.8 km for gentle and steep terrain area respectively. (4) Some local scale characteristics and also large scale differentiation laws for themes of slope and distributed watershed slope length can be identified in China. The slope degree is steeper in the mountainous area, hilly areas (especially in loess hill of northwestern China, red earth hills of southern China), and transitional areas among three terrain ladders. The distributed watershed slope length is longer in gentle hills, mountains in Hengduan mountain area of southwest China, and centre area of Qinghai-Tibet Plateau (figure 3 and figure 4, and table 1). (5) Generally speaking, the calculation result of LS factor is influenced by the slope and distributed watershed slope length synchronously. But it is much more influenced by the slope degree. As result, LS is basically consistent with the slope, and similar to slope, in the geo-spatial pattern and distribution in China (figure 5, figure 6). This paper also proposes some problems to be further researched, including: resolution of DEMs of representative areas, analysis and assessment of the quality of the slope and distributed watershed slope length datasets, scaling effects of slope, distributed watershed slope length and LS factor, analysis of factors influencing on extraction and calculation of LS factor, applicability of the parameters in soil erosion assessment and mapping, methodologies for making thematic maps for slope, distributed watershed slope length, aspect and LS factor for China at small map scale (1:4 million).

Key words—soil erosion; slope degree; slope length; LS factor; geomorphometry
the software developed by the authors[8-9]. The LS factor was calculated based on functions proposed by Liu baoyuan[10-12].

2.3 Mapping and analysis

Mapping about slope degree, slope length and LS factor were designed and mapped based on 25m resolution data talked above.

5 RESULTS AND ANALYSIS

3.1 Presentation of erode terrain surface

DEM were built using the software ANUDEM[13-14] in this paper. The technical route is as Fig.1. DEMs built using this method are able to present varied types of terrain in China scientifically and accurately. The DEMs presentation of terrain is accordance with field survey and reported by references[15] (Fig.1 and Fig.2 near here).

(Fig.1 and Fig.2 near here)

3.2 Micro characteristics of terrain parameters

The microcosmic characteristics of slope degree, slope length and LS factor were analyzed and the result shows that: Slope degree is smaller in undulated hills in the northeast of China, and greater in hilly red soil region of south-east of China and purple soil hilly area of Sichuan Basin. In Loess hilly areas, it’s steeper below the gully edge line and flatter in the upward areas of the line (Fig.3 and Tab.1).

(Fig.3 and Tab.1 near here)

Slope length increased from local high ppoint downward along flow path. In the view of small watershed, slope length increased from waterline downward, which is accordance with the extraction principle of slope length (Fig.4 and Tab.1).

(Fig.4 near here)

The surface of LS factor is influenced both by slope degree and slope length, but the influence of slope degree is greater than slope length (Fig.5).

(Fig.5 and Fig.6 near here)

3.3 Macro characteristics of terrain parameters

There was obvious macro characteristics of terrain parameters (including slope degree, slope length and LS factor), which were shown by small scale maps of terrain parameters (Fig.6).

(Fig.5 and Fig.6 near here)

The steep areas in China distribute in Hengduan Mountains, Qinling Mountains, mountains in east of Sichuan Province, Northern Rock Mountains, Liaodong Peninsula, Hilly Red Soil Region of South-east of China and Loess Hilly areas. These areas are mainly located in the transition region of the Three Gradient Terrain of China.

The slope length was shown to be longer in the areas following: the undulated hills in the northeast of China, the Southwest Mountainous region (Hengduan Mountains) and the hinterland of the Qinghai-Tibet Plateau. In most of the hilly areas, such as Loess hilly areas, north hilly areas of China, purple soil hilly area of Sichuan Basin and hilly red soil region of south-east of China, the slope length is shorter.

In the areas of Southwest Mountains, hilly red soil region, Loess hilly areas and northeast of China, LS factor was relatively large. There were two kinds of reason for the large LS factor value, one is steep slope (mainly in hilly areas), and the other one is steep slope and long slope length (for example in Southwest Mountainous region).

4 CONCLUSION AND DISCUSSION

We can conclude as follows: 1) a certain processing route should be followed and pre-processing should be taken in the processes of Hydrologically correct DEMs building. 2) He-DEM with resolution of 25m could be used to present terrain characteristics all over China and in typical terrain areas. 3) There were both macro and micro characteristics in slope degree and slope length surface. At the national scale, slopes are steeply in the transition region of the Three Gradient Terrain of China and in hilly areas. And slope length was large in gentle hilly areas, Southwest Mountainous region and the hinterland of the Qinghai-Tibet Plateau. 4) Generally speaking, LS factor was influenced both by slope degree and slope length, but the influence of slope degree was greater, thus the national spatial pattern of LS factor was basically accordance with slope degree.

5 DISCUSSION

Some questions still needs to be answered, such as, what is the appropriate resolution in different terrain areas, some questions about the data quality assessment of slope degree and slope length, influence of scaling effect of slope degree and slope length on LS factor, slope degree and slope length maps at small scales and influence factors of LS calculation.

ACKNOWLEDGMENT (Heading 5)

This research is supported by Natural Science Foundation of China project (Estimating Spatially Distributed Slope Length at Watershed for Soil Erosion Assessment41071188; Re-scaling of Slopes Derived from Lower Resolution DEMs for Regional Soil Erosion Modeling, 40971173), and Project of Ministry of Water Resources (SBZX-SBPC-1005)

REFERENCES


Figures and Tables

Fig.1 workflow of LS extraction

Fig.2 DEMs of China and representative areas

Fig. 3 microscopic characteristics of slope in main erosion area of China
Fig. 4 microscopic characteristics of distributed slope length in main erosion area of China

Fig. 5 spatial pattern of slope, slope length, and LS

Tab. 1 statistics of slope, slope length and LS for main erosion area of China

<table>
<thead>
<tr>
<th>sites</th>
<th>mean</th>
<th>medium</th>
<th>max</th>
<th>std</th>
<th>mean</th>
<th>medium</th>
<th>max</th>
<th>std</th>
<th>mean</th>
<th>medium</th>
<th>max</th>
<th>std</th>
</tr>
</thead>
<tbody>
<tr>
<td>undulated hills</td>
<td>2.02</td>
<td>1.7</td>
<td>5.9</td>
<td>1.26</td>
<td>208.18</td>
<td>150</td>
<td>874.2</td>
<td>191.31</td>
<td>1.17</td>
<td>0.9</td>
<td>4.2</td>
<td>0.98</td>
</tr>
<tr>
<td>Hills in Sichuan</td>
<td>18.53</td>
<td>19.2</td>
<td>31.5</td>
<td>6.74</td>
<td>123.12</td>
<td>100</td>
<td>449.2</td>
<td>98.20</td>
<td>13.69</td>
<td>13.6</td>
<td>32.6</td>
<td>7.86</td>
</tr>
<tr>
<td>Hill in South</td>
<td>18.46</td>
<td>18.9</td>
<td>34.9</td>
<td>7.69</td>
<td>103.72</td>
<td>70.7</td>
<td>447.4</td>
<td>94.02</td>
<td>12.51</td>
<td>11.3</td>
<td>34.2</td>
<td>8.32</td>
</tr>
<tr>
<td>Loess hills</td>
<td>21.46</td>
<td>22</td>
<td>39.7</td>
<td>9.14</td>
<td>82.84</td>
<td>67.6</td>
<td>328</td>
<td>67.90</td>
<td>13.87</td>
<td>13.1</td>
<td>35.1</td>
<td>8.60</td>
</tr>
</tbody>
</table>

Fig. 6 Maps of topographic parameters, China