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Abstract—We propose a multidimensional framework for charac-
terization  of  land  surface  dynamics  based  on  time  series  of 
elevation  data  acquired  by  LiDAR  technology.  The  proposed 
methods  integrate  line  feature,  surface  and  volume  analysis.  A 
novel, least cost path approach for coastal dune ridge and dune toe 
extraction  is  presented  to  support  automated  feature  evolution 
analysis. Per-cell statistics is applied to DEM time series to extract 
the  stable  landscape  core  and  map  the  extent  of  land  surface 
dynamics.  Voxel representation of terrain evolution within space-
time cube is explored and used to visualize contour evolution. The 
framework is applied to analysis of barrier island dynamics using 
time series of airborne LiDAR data acquired over the past decade. 
Field-scale elevation change is studied based on terrestrial LiDAR 
surveys and flow patterns. Impact of terrain modification on flow 
pattern is investigated using Tangible Geospatial Modeling System. 

I.  INTRODUCTION 

LiDAR sensors  are  increasingly  used  for  repeated  surveys 
that capture the short-term evolution of landscapes and provide 
unique  insights  into  land  surface  dynamics.  These  surveys 
produce high resolution, multi-temporal elevation data and new 
concepts and methods in geomorphometry are needed to study 
and characterize topography as a dynamic surface.

Traditional methods for investigation of land surface change 
from LiDAR-based  DEMs rely on a relatively straightforward 
difference of DEMs computation, including estimation of volume 
change  [1]. Line  features,  such  as  shorelines,  ridge  lines  or 
channels, extracted from series of DEMs have also been used for 
quantification of  land surface  dynamics in  terms of  horizontal 
feature  migration  rates  [2]. The  high  resolution  and  noisy 
surfaces that characterize LiDAR-derived DEMs pose challenges 
for traditional feature extraction methods and are motivation for 
development of algorithms that combine computational geometry 
with  image  processing  and  machine  learning  techniques.  The 
Least Cost Path (LCP) approach is emerging as a robust method 
for  extraction of continuous line features from complex, noisy 
surfaces (see e.g., [3] for stream extraction method from radar-
based DEMs based on LCP). These line features then can be used 
to  quantify  feature  migration  and  map feature-derived  metrics 
such as storm vulnerability factor [4] or erosion risk index. 

Changes in elevation surface can have profound impact on 
processes such as overland water flow, flooding, soil erosion or 
solar  irradiation  and,  consequently,  on  ecosystems and  human 
activities. The high resolutions of airborne and terrestrial LiDAR 
surveys provide unique opportunities to study these impacts, but 
little  research  has  been  done  to  date  on  the  simulation  of 
processes using LiDAR-derived time series of DEMs.

In this paper, we introduce a multidimensional framework for 
terrain  evolution  analysis  that  captures  spatial  and  temporal 
variability of elevation surface based on a time series of 1D line 
features, 2D elevation rasters, and a 3D space-time cube model. 
This  framework  is  applied  to  a  dynamic  coastal  beach  and 
foredune system in North Carolina where the change is driven by 
wind sand  transport,  wave  induced  beach  erosion  and  human 
intervention such as beach nourishment. We then demonstrate the 
application  of  flow  tracing  for  capturing  the  subtle  terrain 
features and their change from time series of terrestrial LiDAR 
scans of an agricultural  field in the piedmont region of North 
Carolina. Finally, we conclude with a description of the Tangible 
Geospatial  Modeling  System,  a  collaborative  environment  for 
investigation  of  terrain  change  impacts  on  topographic 
parameters and landscape processes.

II. LAND SURFACE DYNAMICS FROM TIME SERIES OF LIDAR DATA 

A multidimensional  framework  for  characterization of  land 
surface dynamics using time series of elevation data integrates 
the following approaches:

• Feature  Evolution:  Extracts  line  topographic  features 
(e.g.  shorelines,  ridges,  channels)  from DEMs for  each  time 
snapshot and derives dynamics metrics from these features; 

• Surface Evolution: Applies a per-cell statistical analysis 
to time series of raster DEMs resulting in new raster maps that 
characterize  evolution  of  land  surface  while  preserving  the 
original spatial resolution and detail of the DEM;

• Space-Time  Cube: creates  a  voxel  representation  of 
elevation evolution with time as third dimension and evolution 
of contour-based features represented by isosurfaces.
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The methodology is based on the open source GRASS GIS  [5] 
tools and algorithms implemented in custom python scripts. The 
framework is illustrated by examples from the analysis of 100 km 
of North Carolina barrier islands mapped by 14 airborne LiDAR 
surveys between the years 1996-2009 acquired at ~ 1-2 year time 
steps,  and represented by  0.5 m resolution DEMs interpolated 
and smoothed by regularized spline with tension [5][6].

A. Feature evolution 

To measure  land  surface  evolution using line  features,  the 
salient features are extracted from each DEM and then their 3D 
migration is tracked, usually along set of profiles. For example, 
coastal erosion rates are estimated by extracting shorelines from 
DEMs as mean high water elevation contours and then measuring 
their displacement along cross-shore profiles. More sophisticated 
methods  are  needed  for  extraction  of  complex  features  like 
coastal dune ridges and dune toes. To ensure a continuous line 
extraction  of  these  features  from  LiDAR-based  DEMs,  we 
propose a new approach based on the LCP method. 

The cost function for a  coastal dune ridge extraction can be 
defined as an inverse function of elevation, with the  cost of a 
shorter,  lower-elevation path greater than the cost of a slightly 
longer, higher-elevation path. The following cost function fulfills 
these conditions and performed well in our tests :

J=e−bz 1

where J is the cost of traversing a raster cell, z is elevation, and b is 
the  tunable  parameter.  Given  the  cost  surface  (1),  the  ridge  is 
extracted as the least cost path between two given end points of 
the ridge (Fig. 1a). When compared to traditional methods that 
rely on curvatures or local extremes along cross-shore profiles, 
the LCP approach generates continuous ridge line  with minimal 
human intervention.

The cost function for  dune toe extraction is more complex 
because  the  geomorphologically  intricate  dune  toe  is  more 
difficult to define quantitatively. It is qualitatively described as 
the location where the beach  meets the foredune. This location 
can also be conceptualized as the location where the cross shore 
profile deviates the most from a line connecting the dune ridge 
and  shoreline.  By  expanding  this  conceptualization  into  two-
dimensions, a continuous dune toe can be extracted.

First,  the  elevation  of  an  elastic  sheet  with  boundary 
conditions at the shoreline and the dune ridge is computed (Fig. 
1b). The sheet is modeled as an array of critically damped springs 
with nodes located at  each raster cell.  The nodes between the 
shoreline  and  dune  ridge  can  move  vertically,  but  not 
horizontally, and the nodes at the ends of the sheet are fixed to 
the  shoreline  and  the  dune  ridge.  Two  forces  act  on  each 
individual node: a viscous damping force, which depends on its 

velocity,  and  a  spring  force,  which  depends  on  its  elevation 
relative to the elevations of its neighbors. The motion of a node 
in the raster cell i, j is described by the differential equation

d2 zi, j

dt2
20

d zi , j

dt
0

2∑
〈 i, j〉

zi, j−4z i, j=0 2

where z is elevation, t is time, ω0 is the angular frequency, ζ is the 
damping ratio, and brackets indicate a sum over nearest 
neighbors. This equation can be written as a system of two, first-
order ordinary differential equations and solved using standard 
numerical techniques like Runge-Kutta. 

Second, elevation of the sheet and the terrain surface (Fig. 1a) 
are differenced using map algebra, resulting in a raster map that 
represents the deviation ∆z between these two surfaces (Fig. 1c). 
Finally, a cost surface is  derived using the cost function given by 
(1)  where  z has  been  replaced  by  ∆z and  the  least  cost  path 
approximates the dune toe (Fig. 1d). 

Changes in the 3D position of the dune toe and dune ridge are 
then measured to evaluate the trends in dune evolution (Fig. 2). 
These continuous line features are also used to assess changes in 
the storm vulnerability factor (Fig. 1e) that relates the spatially 
variable storm surge to dune ridge and dune toe position [4][7]. 

Figure 1. Coastal feature extraction using the LCP method: (a) DEM with 
extracted dune ridge, (b) DEM with sheet anchored at dune ridge and shoreline, 
(c) surface showing the elevation difference ∆z between the DEM and the sheet, 

(d) dune ridge and dune toe, (e) vulnerability factor draped over DEM.

B. Surface evolution 

To map the spatial pattern of the surface dynamics we have 
introduced  the  concept  of  core and  envelope surfaces  (i.e. 
minimum and maximum elevation  measured  at  each  grid cell 
over the given time period) and dynamic layer (the volume bound 
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by  the  core  and  envelope),  as  well  as  the  time  of  elevation 
minimum and the  time of  elevation  maximum maps  (Fig.  3). 
These raster maps are derived by simple per-cell statistics applied 
to time series of DEMs (see [8] for more details and additional 
metrics). The concept has been specifically designed to map the 
stable  core  of  the  barrier  islands  and  to  identify  their  most 
dynamic  landforms,  but  it  can  be  applied  to  other  types  of 
evolving  landscapes,  such  as  migrating  dune  fields,  eroding 
hillslopes and streams, and  active debris flows. 

By applying line feature extraction to the core and envelope 
the space  within which the  given line  feature  evolved can  be 
mapped.  For  example,  shorelines  extracted  from the  core  and 
envelope  define  a  shoreline  band within  which  the  shoreline 
evolved during the given period (Figs. 2, 3). Additional metrics 
that provides quantitative information about mass redistribution 
within the evolving landscape has also been derived [6]. 

Figure 2. Change in the dune ridge, dune toe and shore line between the years 
1998 and 2008: (a) respective evolution bands, (b) 3D ridge evolution space.

Figure 3. Raster-based analysis of coastal terrain dynamics: (a) 2008 DEM with 
orthophoto and shoreline band, (b) time of elevation maximum map draped over 

a 2008 DEM, (c) cross-section through core, envelope and migrating dune 
surfaces. Inset shows detail of shoreline band with actual shoreline positions.

C. Land surface dynamics in space-time cube

The analysis based on time series of DEMs outlined above 
handles evolution over time as discrete landscape snapshots. To 

apply the full power of analysis based on differential geometry 
land surface evolution can be represented as a trivariate function

z= f x , y , t  3  
where the third dimension is time and elevation is the modelled 
variable. Elevation evolution is then represented as a voxel (3D 
raster) model interpolated from time series of LiDAR point cloud 
using trivariate interpolation. To visualize evolution of selected 
contours  z=ci in  space-time  cube,  isosurfaces  c=f(x,y,t) are 
extracted  from  the  voxel  model  (Fig.  4).  Spatio-temporal 
gradients (fastest change in elevation vectors) can also be derived 
using partial derivatives of the trivariate interpolation function.

Figure 4. Elevation evolution in space-time cube: (a) limited, but hard to 
interpret set of contours z=10,12 m for  the years 1999, 2005, 2008, (b) space-
time isosurfaces derived from 1999, 2001, 2004, 2005, 2007 2008 point data, 
equivalent to z=10,11,12 m contours stretched in the vertical time dimension.

III. IMPACT OF LAND SURFACE CHANGES ON PROCESSES  

Change in topography can significantly influence landscape 
processes such as flooding or runoff. The magnitude of elevation 
change does not always translate into the magnitude of impact, 
and location and geometry of the elevation change can play a 
more important role. Application of process-based simulations to 
series of real-world or designed DEMs provides opportunities for 
investigation of relationships and interactions between the change 
in elevation surface geometry and water or mass flow patterns.

A. Flow accumulation change due to evolving land surface 

 Land surface change is more subtle in sustainably-managed 
inland  watersheds  than  on  dynamic  coasts  or  in  disturbed 
landscapes exposed to extensive erosion and gullying. To study 
impact  of  small  elevation  changes  on  overland  flow,  we 
performed repeated terrestrial LiDAR surveys of an agricultural 
field that captured elevation surface at cm resolutions (Fig. 5). D-
inf flow  tracing  and  particle  sampling  simulations  were  then 
applied to the 20 cm resolution DEM series to identify changes in 
micro-topography, such as breaches in micro-ridges created by 
tillage that can redirect the overland flow (Fig. 5).

B. Geodesign

Although real world LiDAR data time series are becoming more 
common,  laboratory  systems  can  provide  us  with  rapidly 
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generated series of DEMs with different configurations of terrain 
features and structures.

Figure 5. Flow tracing in a small watershed that includes tilled field modeled 
(a) at 1m resolution from DEM derived from airborne LiDAR data, and (b) at 

0.20 m resolution from DEMs derived from terrestrial laser scanner. 

This  is  particularly  useful  in  design  studies  that  examine  the 
impact  of  elevation  changes  on  surface  processes.  For  this 
purpose,  we use an exploratory  Tangible Geospatial  Modeling 
System (TanGeoMS)  [9]  that  consists  of  a  flexible  landscape 
model,  a  3D laser  scanner,  and a projector  (Fig.  6).  The laser 
scans a 3D clay model, which can be readily modified by hand. 
The impact of terrain modifications on a selected parameter (e.g. 
slope, water flow, insolation) is then projected as a color map on 
the surface  of  the  model.  The capability  to  easily  change the 
terrain surface, including models of built structures, coupled with 
full  power  of  GIS,  facilitates  collaborative  exploration  of 
landscape design and terrain change impact on processes, such as 
overland water flow (Fig. 5) or coastal flooding [9].

IV. CONCLUSIONS

We have introduced a methodology for comprehensive analysis 
of land surface dynamics by integrating 1D feature extraction, 2D 
raster-based per-cell statistics and 3D modeling within the space-
time  cube.  An  important  component  of  this  methodology  is 
robust  extraction  of  coastal  topographic  features  from  high 
resolution DEMs using LCP approach. The concept of the stable 
core,  dynamic  envelope  and  other  per-cell  statistics  measures 
provide detailed information about the form and rate of coastal 
terrain change for  research and management  applications.  The 
space-time cube concept is still at exploratory stage, but we have 
shown its feasibility and potential for visual and geometry-based 
analysis of elevation evolution. Flow tracing has been applied as 
an effective tool for  identification of subtle  changes in micro-
topography captured by terrestrial  LiDAR. The presented case 

studies demonstrate that high spatial and temporal resolution of 
modern 3D mapping technologies  coupled with advanced GIS 
tools bring new opportunities to study topography as a dynamic 
surface  and  explore  the  feedbacks  between  evolution  of 
landforms and landscape processes. 

Figure 6. Tangible Geospatial Modeling System: a model is scanned to create a 
DEM while GIS data are projected over the model; simulation of overland flow 

exploring impact of road breach and a check-dam on flow pattern.
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