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1. Introduction 
Wavelet decompositions are a powerful tool for multiscale image analysis. Their use in 
DEMs (Digital Elevation Models) analysis is still limited. Nevertheless, some 
researchers (De Boer 1992, Wilson & Gallant 2000) demonstrated that scale and 
structure play an important role to determine the elementary shape of landscape 
features. Wavelets are ideally localized functions fulfilling that condition (Mahler 
2001, Gallant & Hutchinson 1996). 

Wavelet analysis of high-resolution (1-meter) DEMs is highly complementary to 
morphometric indicators (Wood 1996); e.g., applications include multiscale filtering 
and enhancement. Here, we introduce various methods using wavelets and structure 
tensors in order to show the multiscale nesting of landscape features. The method was 
applied on a DEM including a well-known landslide, and the results were compared to 
an ordinary geomorphological analysis. The aim is to show the potential of this method 
and to give hints for further development of such tools in terrain analysis systems. 

2. Methodology 

2.1 Laplace-Gradient Wavelet Pyramid 
Classical wavelet transforms (Mallat 1996, Mallat 2000) act like a smoothed 
multiscale derivative operator when applied to the data. Usually, multidimensional 
data is processed in a separable way, i.e. dimension-by-dimension, which leads to 
multiple wavelets at each scale making the interpretation difficult. The recently 
introduced “Marr wavelet pyramid” (Van De Ville et al. 2008b) is an intrinsic 2-D 
wavelet design inspired on David Marr’s theory of primate’s vision (Marr 1982) that 
circumvents these limitations. Each scale is characterized by a single wavelet that acts 
like a Laplace-complex gradient operator. Consequently, the wavelet coefficients are 
complex-valued and their phase provides directional information.  

Marr’s theory proposes that vision (or human visual capabilities) is linked to 
information cells tuned into different spatial frequencies, thus making it possible to do 
multiscale analysis. For this purpose, wavelets are a useful tool for DEM analysis. 

The starting point of the wavelet pyramid is the identification of the Laplace-
complex gradient, which characterizes the complete family of shift-invariant, scale-
invariant, and rotation-covariant convolution operators (Equation 1, Van De Ville & 
Unser 2008b). 
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Next, the associated wavelet function is a multiscale version of this operator; i.e., 
the wavelet is defined as )(,   NL , where   is an appropriate smoothing kernel. 

The scaling function associated with the wavelet pyramid is the so-called complex 
polyharmonic B-spline N,  in 2-D (Van De Ville et al. 2008b, Van De Ville et al. 
2005); its scaling relation for dyadic subsampling (factor of 2 in each dimension) can 
be expressed conveniently in the Fourier domain by the low-pass filter H (Equation 2). 
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The wavelet function is embedded in the finer approximation scale; i.e., the high-
pass filter W expresses the relationship in Equation 3. 

 )(ˆ)(
4
1)2(ˆ ,, ωω ω

N
j

N eW    (3)

Here, we use 3  (number of vanishing moments) and 1N  (order of the 
complex gradient). Consequently, the wavelet transform corresponds to a multiscale 
version of the operator 1,3L  (Equation 1). 

To obtain the pyramid decomposition of the signal of interest, we apply the efficient 
filterbank algorithm depicted in Fig. 1. The decomposition is applied iteratively to the 
low-pass coefficients  k1ic . The wavelet coefficients are not subsampled, which 
leads to a pyramid structure with mild redundancy. In this paper, we chose up to eight 
decomposition levels. 

 
 

Figure 1. Laplace-gradient wavelet pyramid filterbank 
(adapted from Van De Ville et al. 2008b). 

 
Before applying the synthesis procedure, we can process the wavelet coefficients 

(  k1id ), as embodied in the box F of Fig. 1. The synthesis procedure uses a so-called 
subband regression method to obtain the most consistent reconstruction with respect to 
the (redundant) decomposition (box SR in Fig. 1, see Unser & Van De Ville 2008 for 
more details). 

2.2 Structure Tensors 
Structures tensors are a representation of pixel value changes in a local neighbourhood. 
The complex-valued wavelet coefficients can be interpreted directly as the gradient of 
a Laplace-filtered and multiscale smoothed version of the data; i.e., we have 

        kkk iii ddg Re,Im . Therefore, the wavelet coefficients can be used to 
compute a multiscale structure tensor (Van De Ville et al. 2008a): 
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where w  is a fixed-size smoothing window with positive weights. 
The eigenvectors and eigenvalues of the structure tensor provide robust and 

essential information about the signal variation at a given scale. Specifically, we did 
use the following three measures, obtained from the tensor (Van De Ville et al. 2008a): 

 Orientation: orientation shows the dominant direction of the local structure. It 
is less prone to noise than the coefficient-wise orientation. Since the tensor is a 
second-order descriptor, there is no difference between a "positive" and a 
"negative" edge; i.e., gradients pointing in opposite directions are considered 
equally (  2/,2/ norientatio ). 

 Energy: energy of the the local gradient. 
 Coherency: the ratio between the mean square magnitude of the gradient and 

the magnitude of the orientation vector gives an indicator called the coherency 
(  1,0coherency ). Large coherency shows that there is a dominant orientation 
in the local neighbourhood (depending on the Gaussian window's size) and 
small coherency indicates isotropy (Van De Ville et al. 2008a, Jähne 2005). 

In order to have a comprehensive visualization of these measures, the 3 components 
are combined in a composite HSB (hue-saturation-brightness) image. The orientation 
was coded in the hue level (colour tint), the coherence in the saturation level and the 
energy in the brightness level. We applied histogram equalization to the energy 
component, since some initial adjacent pixels (elevations) have markedly different 
values. These ones induce much higher energy values than most of the other pixels. A 
root function (3rd or 4th order, depending on the decomposition level) was used to 
soften this effect. 
 

 
Figure 2. Landslide context in Travers, Switzerland, DEM©SITN. 
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3. Application on High-Resolution DEMs 
The proposed methodology was applied on a high resolution DEM (base resolution 
1m) covering a recent landslide (2007) in Travers – Canton de Neuchâtel, Switzerland. 
The DEM was generated using TIN (Triangular Irregular Network) interpolation on 
raw scan2map1 airborne LiDAR (Light Detection And Ranging) points. The resulting 
shaded DEM and the delimitation of the contained landslide are shown in Fig. 2. 

3.1 Phase and Magnitude of the Complex Wavelet Subbands 
The wavelet coefficients are complex-valued: phase (inverse tangent of the real and the 
imaginary parts) indicates the orientation and magnitude (squared root of the squared 
real and the squared imaginary parts) represents the strength. An example is shown in 
Fig. 3. 
 

 
Figure 3. Phase (a) and magnitude (b) results on the landslide region for the first four 

decomposition levels (i.e. resolutions of 1, 2, 4 and 8 meters). 
 

                                                 
1 scan2map is a research project of the Geodetic Engineering Laboratory at the Ecole Polytechnique 
Fédérale de Lausanne (TOPO-EPFL, see http://topo.epfl.ch/laserscanning/) 
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Phase and magnitude can also be combined to create a multiscale vector field. Each 
decomposition level shows the behaviour of its associated resolution. In Fig. 4, we 
show gradient vector fields using different decomposition levels. 

We observe that the magnitude reveals interesting structural features depending on 
the decomposition level (thus the equivalent resolution of the feature shape) and phase 
the azimuth of the feature. Both of these indicators may be used for multiscale Canny 
edge detection, but this was not undertaken in this paper. 
 

 
Figure 4. Phase-magnitude vector field for the first decomposition level (1m 

resolution) (a), for the third decomposition level (4m resolution) (b) and for the fifth 
decomposition level (16m resolution) (c). 

3.2 Subband-selective Reconstruction 
Reconstruction from specific subbands allows to choose which elements, based on 
their resolution (i.e. decomposition level), should be reconstructed to the finest scale (1 
meter resolution). Fig. 5 shows the combination results of the different decomposition 
levels. The following procedure was used to create these images: 

 The high resolution DEM was analysed until the nth level. 
 The resulting low pass grid was suppressed. 
 The Marr pyramid was reconstructed using the subband regression. 
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The images in Fig. 5 are normalised ([-100,100]) coefficients with a colour 
saturation level at [-20,20]. Negative values are given in blue and positive values in 
red. The coefficients of the different levels were not enhanced (frequency boosting), 
but this could be done easily, depending on the interest of the geomorphologist. 

 

 
Figure 5. Subband reconstruction for cumulative high pass coefficients, from level 1 to 

cumulative level 1-8. 
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Fig. 5 illustrates the nesting of landscape structures and helps for the identification 
of pertinent morphological elements of the landslide. Any levels (filtered version or 
not) could be combined, to help multiscale feature recognition. 

3.3 Structure Tensor of the Different Decomposition Levels 
The different measures obtained from the multiscale structure tensor (coherency, 
energy and orientation) also provide excellent characterization of landscape elements. 
In Fig. 6, we show the results for the first decomposition level. As expected, coherency 
shows the isotropic behaviour of this level structures (whitest pixels) and energy (3rd 
root) the local energy of the coefficients. Fig. 6 was created using a 3x3 moving-
average window. 
 

 
Figure 6. Structure tensor results for the first decomposition level, (a) coherency, (b) 

energy and (c) orientation. 
 

Another representation of these results is given in Fig. 7 where the three new layers 
are coded in HSB image (H = orientation, S = coherency, B = energy). Going through 
the decomposition level, the images show more and more generalized structures. 
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Figure 7. HSB images of structure tensor results for the first four decomposition levels. 
 

4. Conclusion 
We propose a novel DEM multiscale analysis approach. It is built upon recent 
advances in multidimensional wavelet design, in particular the Laplace-gradient 
wavelet pyramid. The phase and magnitude of the complex wavelet coefficients 
provide a unique representation of multiscale nested features. The combination of 
coefficients from distinct decomposition levels permits to obtain scale dependent 
structures corresponding to the needs of geomorphologists. 

Localized and oriented multistructural information, as well as structure tensors, 
provide additional analytical elements. Combined to usual morphometry (Wood 1996), 
the proposed way of incorporating scale and structure may be useful to further 
elaborate landscape geomorphological processes. 
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