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1. Introduction 
Soil organic carbon (SOC) is a dynamic component of the terrestrial system, with both 
internal changes in the vertical and horizontal directions and external changes with the 
atmosphere and the biosphere. Changes in SOC are attributed to both natural processes 
and human activities, and reflect the balance between decomposition of organic matter 
and input from roots and litter (Turner and Lambert 2000). In recent years, the 
importance of human activities has been widely recognized. Land use changes, 
including deforestation, biomass burning, draining of wetlands, ploughing, use of 
fertilisers and other agricultural practices, are regarded as the main factors causing loss 
of SOC and the emission of CO2 into the atmosphere. These changes can be significant 
in grassland and cropland (Conant and Paustian 2002, Schuman et al. 2002) where 
intensive agricultural activities are carried out.  

As part of international efforts to stabilize atmospheric greenhouse gas 
concentrations, Denmark is committed to establish inventories of the C stock in the 
frame of the Kyoto protocol. In this context, our study focuses on building a simple, 
realistic, practical and informative classification-tree model to predict the distribution 
of spatial patterns and changes in SOC across a study area in southern Denmark from 
mapped environmental variables.   

2. Material and Methods    

2.1 Site Description   
The chosen study area, covering about 1812 km2, is located in southern Denmark (Fig. 
1). The climate is temperate with mean annual temperature ranging from 0 to 16°C, 
and a West-East gradient in precipitation oscillating between 900 and 600 mm/year 
(1961-1990). 95% of parent materials have glacial and fluvio-glacial origin. 
Approximately 65% of these materials were deposited during the last glacial period 
(between 10,000 and 100,000 years), and 20% during the previous glacial period (more 
than 110,000 years ago). However, the deposits from that period were all strongly 
redistributed by periglacial processes, and evidence of earlier soil formations is 
extremely rare. The area is representative of a broad region of landscapes in Denmark 
(i.e. weichsel moraine landscape, glacifluvial plains, saalian landscape, aeolian 
landscape, and post glacial marine deposits). The elevation varies from 0 m in the 
western part to 85 m in the eastern part. The area has been intensively cropped since 
the Middle Ages. Currently, 70% of the area is cultivated, 10% forested and the rest 
urbanized.  
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Figure 1. Soil map of the study area within Denmark (Madsen et al., 1992) 

2.2 Soil Samples Collection  
The soil was sampled at 1541 sites selected by four different surveys to be 
representative for the area. In order to avoid soil variability on a small scale, 25 bulk 
soil samples were taken within a radius of 50 m from a depth of 10-20 cm in the 
Danish Soil Classification (1975) and the Danish Profile Investigation (1990). The 
collected samples in these two surveys were taken to the laboratory for analysis. These 
samples were air-dried at room temperature and passed through a 2 mm soil sieve. 
Concentrations of SOC were determined by the combustion method in a LECO 
induction furnace, converted to % Soil Organic Matter (SOM). The other two surveys 
(ochre classification and well database performed in 1985) gave categorical 
information on parent material (e.g. peat, sand, silt and clay). This parent material 
information was reclassified into organic and mineral soils. In order to increase the 
number of samples used in the modeling process, the continuous soil organic matter 
(SOM) obtained in the former surveys was converted to a categorical variable using 
10% SOM as a cut off value. With less than 10% SOM, soils are classified as mineral; 
and with more than 10% SOM, soils are considered organic.  
 
2.3 Data Acquisition and Pre-Processing   
Mapping organic soils can be achieved using decision-tree modelling through 
incorporating secondary spatial information into prediction (Mueller and Pierce 2003). 
Available digital geology (with five classes, Jakobsen and Hermansen 2007), soil (with 
eight classes, Madsen et al. 1992) and landscape (with five geomorphological units, 
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Smed 1978) maps of the study area at different scales (1:20.000, 1:50.000) were 
converted to 30 m square grids.  

A 30 m digital terrain model (DEM) was developed for the study area. The DEM 
resolution was chosen to match the spatial resolution of the used remote sensing data. 
The digital elevation data was acquired using airborn LiDaR, and a DEM of 2-meter 
resolution in full national scale was produced. This high resolution model was 
resampled to 30-meter resolution for the purpose of this study. Topographic attributes 
may aid spatial estimation of soil carbon, because the relief has a great influence on 
soil formation (McKenzie and Ryan 1999, Bou Kheir et al. 2007, 2008). They may be 
divided into primary and secondary attributes. Primary terrain attributes can be directly 
extracted from the DEM. Secondary parameters are calculated from two or more 
primary attributes. In this work, eight primary attributes (elevation; slope; aspect; plan, 
profile and tangential curvature; flow accumulation; rate of change of specific 
catchment area) were calculated with ArcGIS® and TerraSTREAM (Danner et al. 
2007). The secondary derived attribute, quasi-dynamic topographic wetness index, was 
produced using the formula of Barling et al. (1994). 

Besides digital elevation models, one of the most interesting sources of secondary 
information could be remote sensing RS, if a relationship between soil properties and 
spectral data could be achieved. Remotely sensed data can be useful for improving 
existing coarse-scale soil survey information at a regional scale (Scull et al. 2005). 
However, high carbon soils in Denmark can not directly be differentiated from moist 
soils using satellite imageries, both appearing as dark soils decreasing the spectral 
reflectance whenever their content increases. For that, several RS indices like the 
Normalized Difference Vegetation Index NDVI (based on red and NIR bands) and the 
Normalized Difference Wetness Index NDWI (based on near infrared and short near 
infrared channels) (Lillesand and Kiefer 1994) were derived from Landsat TM 
imageries (30 m) acquired in April 1987. NDVI was calculated to integrate vegetation 
status, while NDWI was extracted to compute surface moisture. The used Landsat TM 
imageries were chosen for many reasons: (1) being the most recent in the archive, (2) 
having good radiometric quality, and (3) at a minimum of plant cover shading the bare 
soils.   
 
2.4 Statistical Analysis   
The field survey data were split into two files, one compiling 80% of the field samples 
(1233 sites) used in the modelling process, and another one comprising 20% used in 
the validation phase (308 sites). The modelling file integrates x and y fields 
representing locational coordinates and the z field representing SOC. This file was 
converted to a square grid that matched the resolution of the constructed DEM. 
ArcGIS was used to assign topographic, soil, geology, landscape, NDVI and NDWI 
variables to each of the field survey (sampling) locations.  

Spatial prediction of SOC was produced using tree-based classification models. 
These models are easy to interpret and discuss when a mix of continuous and 
categorical variables is used as predictors (Gessler 1996, McKenzie and Ryan 1999). 
They comprise a set of rules facilitating the classification of a categorical 
(classification tree) or continuous (regression tree) dependent variable based on values 
of the independent variables. In predictive SOC mapping, the dependent variable (SOC 
presence/absence) is categorical and the independent variables are both continuous 
(elevation; aspect; slope; plan, profile and tangential curvature; flow accumulation; 
rate of change of specific catchment area along the direction of flow; quasi-dynamic 
topographic wetness index; NDVI; NDWI) and categorical or nominal (soil type; 
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geological substrate; landscape type). However, the most significant advantage of tree-
based models is the capacity to model non-additive and non-linear relationships in a 
relatively simple way (Scull et al. 2005). This is particularly useful for soil data where 
interactions between the response variable and environmental explanatory variables are 
often conditional on other explanatory variables.  

Three sets of tree-models were explored based on (1) all of the variables, (2) the 
primary topographic variables only and (3) selected pairs of variables. Once the tree 
has been developed, it encodes a set of decision rules that define the range of 
conditions (values of environmental variables) best used to predict each SOC class.  

Pruning the tree is necessary to prevent the model from being over-fit to the sample 
data, and to reduce tree complexity. Pruning entails combining pairs of terminal nodes 
into singles nodes to determine how the misclassification error rate changes as a 
function of tree size. We used cost-complexity pruning with an independent data set (a 
pruning data set) to produce a plot of training misclassification error rate versus tree 
size (Safavian and Norvig 1991).  
 
2.5 Construction of SOC Map    
Using the preferred classification-tree model (having the highest predictive power, and 
the lowest number of nodes), a predictive map of SOC was obtained under a GIS 
environment. This map was validated based on field surveys. An independent dataset 
has been chosen randomly in all landscape units, consisting of 20% (308 sites) of the 
total number of field sites, and the total accuracy was calculated. 
 
3. Results and Discussion  
Training misclassification error rates for the explanatory trees that were developed 
using all variables (Model 1) at a time or the primary topographic variables only 
(Model 2) varied from 23% to 26%, with quasi-identical numbers of terminal nodes 
(71 nodes for Model 1 and 69 nodes for Model 2). The relative importance of the 
predictor variables (Gini splitting method) in building those trees and splitting the 
corresponding nodes is shown in Table 1.  

Applying cost-complexity pruning indicated that model 1 (based on all variables) 
would classify correctly 60% of the tested SOC selecting just seven terrain variables 
(with their relative importance shown in parentheses): landscape type (100%), soil type 
(29%), elevation (22.5%), tangent curvature (14%), NDVI (12%), aspect (11%), and 
slope (9%). Model 2 (based on topographic variables only) did slightly better and 
classified 63% of the text data accurately using five variables: (1) elevation (100%), 
(2) slope (36%), (3) aspect (16%), (4) tangent curvature (8%), and (5) profile curvature 
(5%). The number of the terminal nodes was very similar for both pruned models.  

The models based on pairs of variables explained 50-68% of the variation in Soil 
Organic Carbon (Table 2). The model based on soil type and quasi-dynamic wetness 
index (TWI) (model 3) showed the highest predictive power, classifying 68% of the 
data correctly and pruned to fourteen terminal nodes. The TWI is a predictor of zones 
of soil saturation, and SOC often accumulates in lowland (concave) soils for two 
reasons: (1) on steep slopes, dry soil conditions prevail due to more rapid removal of 
water causing an important decrease in SOC, and (2) concave slopes can concentrate 
more water and sediments indicating the potential accumulation of a large quantity of 
soil organic carbon. 
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Predictor variables (%) 

Model 1 
(explanatory tree) 

Model 1  
(pruned tree) 

Model 2  
(explanatory tree) 

Model 2 
(pruned 
tree) 

Elevation  70% 22.5% 100% 100% 
Aspect  50% 11% 54% 16% 
Slope  37% 9% 47% 36% 
Profile curvature  25% 0% 23% 5% 
Tangent curvature  34% 14% 12% 8% 
Plan curvature  23% 0% 25% 0% 
Flow accumulation  0% 0% 4% 0% 
Specific catchment area  0% 0% 0% 0% 
Quasi-dynamic wetness index  37% 0%  

 
Not included in building the model 

Geological substrate   31% 0% 
Soil type 39% 29% 
Landscape type  100% 100% 
NDVI 31% 12% 
NDWI 18% 0% 
Tree size – Terminal nodes  71 9 69 10 
Error rate – Training (%) 23% 33% 26% 33% 
Error rate – Test (%) - 40% -  37% 

 
Table 1. Relative importance of predictor variables (%) and misclassification error 
rates in models 1 (based on all variables) and 2 (based on primary topographic 
variables only).  
 

Predictor 
variables 

a b c d e f g h i j k l m n 

a X 62 64 61 61 61 61 61 62 62 63 61 61 61 
b  X 58 56 53 56 51 50 54 60 60 60 50 52 
c   X 57 58 59 60 60 59 53 62 62 58 58 
d    X 54 53 54 54 54 62 60 61 56 55 
e     X 55 55 55 56 60 60 62 53 55 
f      X 56 56 58 60 61 60 54 54 
g       X 51 56 60 60 60 61 56 
h        X 56 60 61 60 53 56 
i         X 60 68 60 53 54 
j          X 62 62 61 61 
k           X 62 62 62 
l            X 60 60 

m             X 53 
n              X 

a = elevation, b = aspect, c = slope, d = profile curvature, e = tangent curvature, f = plan 
curvature, g = flow accumulation, h = specific catchment area, i = quasi-dynamic wetness 
index, j = geological substrate, k = soil type, l = landscape type, m = NDVI, n = NDWI   
 
Table 2. Proportion of accuracy explained (%) for pruned tree-classification models 
based on pairs of variables (model 3).    
 
Without pruning, this model gave similar results to models 1 and 2 (75% of accuracy 
explained), but model 3 is preferred because it is easier to understand and faster to use 
for making predictions. In addition, pruning the trees to their optimal size is a required 
task because smaller trees may provide greater predictive accuracy for unseen data 
than large trees. In both models 1 and 3, the predictor variable that was used 
statistically to generate the split from the parent node was the soil type, indicating its 
potential role in predicting the geographic location of SOC. The recommended model 
(model 3) relies on a small number of rules and just two independent predictor 
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variables, one of which can be easily and quickly constructed whenever a DEM is 
available, which is the case in most countries (Fig. 2). The produced predictive map of 
soil organic carbon (Fig. 3) at 1:50,000 cartographic scale indicates that 7.5% of the 
wetlands in the study area correspond to organic soils, and 92.5% to mineral soils. The 
confusion matrix between the measured SOC classes and the modelled ones indicates a 
good overall accuracy of ca. 75%.   
 

 
Figure 2. Classification-tree model based on the combination of soil type and quasi-
dynamic wetness index for predicting the spatial distribution of SOC.            
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Figure 3. Soil organic carbon predicted using a classification tree model based on the 
combination of soil type and quasi-dynamic wetness index.   
 
4. Conclusion   
Topographic variables derived from DEMs are related to the geographic distribution of 
SOC. The preferred tree-based models explained 74-77% of the SOC distribution for a 
series of chosen field sites in southern Denmark. Two terrain variables – soil type and 
quasi-dynamic topographic wetness index – proved to be the most important variables, 
indicating that complex or secondary topographic variables show stronger 
relationships to SOC than primary topographic attributes. This particular pair of 
secondary topographic variables incorporated the effects of slope and upslope 
contributing area.   

This modelling approach was easily implemented with available GIS (ArcGIS) and 
statistical (DTREG) software and is suitable for data exploration and predictive SOC 
mapping. It is explicit and can be critically evaluated and revised when necessary. It 
has the capacity to integrate easily other primary topographic attributes (e.g. slope 
length). The inclusion of additional variables might have explained some of the 
additional variation in the geographic distribution of SOC. 

Future work will first compare the results from this study with those from other 
models (e.g. fuzzy logic, artificial neural networks, etc.), and later seek to gather 
additional field data so we can examine whether or not finer-scale DEMs can predict 
the distribution and magnitude of SOC with greater precision and reliability. 
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