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1. Introduction 

To benefit from the ecological and economical functions of soil, land holders, 

corporate stakeholders and, governmental departments need access to quantitative soil 

information. Such information confers weight to decisions regarding the management 

of the land and soil resources. To facilitate this need, we must first comprehend the 

functions and pertinent factors contributing to not only soil variability across a 

landscape but also soil variability with depth down a profile.  

The variation of soil properties down a profile is usually continuous (Ponce-

Hernandez et al. 1986). Soil depth functions are often created to represent the depth-

wise variation of soil properties.  However, with traditional sampling of soil profile 

horizons, it is often assumed that the horizon value of a particular attribute represents 

the average value for that attribute for the depth interval of that horizon. With this 

paradigm, in effect what should be a continuous function, the data often appears 

discontinuous or stepped.   

A flexible and accurate method for fitting continuous functions of soil data is the 

use of smoothing splines (Erh 1972) and equal-area spline functions as proposed by 

Ponce-Hernandez et al. (1986). Essentially, a spline function is a set of local quadratic 

functions tied together with ‘knots’ that describe a smooth curve through a set of 

points. Bishop et al. (1999) demonstrated their superiority over other continuous soil 

depth functions when they predicted various types of soil properties.  

However, in a spatial context, a collection of spline functions for individual site 

observations will ultimately lead only to point observation data sets. To the parties 

concerned, such data will be of little use for mapping soil variability. The response to 

this demand has been answered partly in the way of digital soil mapping, where soil 

properties are mapped based on their relationship with environmental variables 

(Minasny et al. 2008). The scorpan factors as proposed by McBratney et al. (2003) 

provide a valuable predictive framework for determining soil variability in areas with 

limited soil data.  

Given the predictive capabilities of soil depth functions and an explosion in the 

capabilities of digital soil mapping in areas with limited data (Lagacherie 2008), it 

seems only logical for there to be an amalgam of both methods to quantitatively 

predict the vertical and lateral variation of soil properties across a defined area. In this 

paper we propose a novel method for predicting the vertical and lateral variation of soil 

properties in areas where limited soil data exists. Using soil carbon as our exemplar 

soil property we want to firstly determine whether terrain attributes alone are feasible 

for predicting its lateral and vertical variation or whether it is better described with the 

inclusion of other environmental factors relating to parent materials and landuse into 

the predictive models. With the most parsimonious model we want to map carbon 
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storage to a depth of 1m in our defined study area and then demonstrate the 

functionality of the underlying soil geo-database for data enquiry by mapping the 

depth at which soil carbon falls below 1%.  

2. Methods 

2.1 Study Area and Soil Data 

The study site (1500km
2
) is situated near Narrabri (30.32S 149.78E), 500km NNW of 

Sydney, NSW, Australia. Agricultural enterprises such as cropping and pastoral 

farming are predominant in the area. There are also some significant tracts of land 

covered with remnant vegetation (Fig. 1).  

The soil dataset consists of 341 soil profiles (Fig. 1). The dataset describes and 

quantifies various soil morphological, physical and chemical attributes at depth 

intervals of 0–0.1, 0.1–0.2, 0.3–0.4, 0.7–0.8, 1.2–1.3 and 2.5–2.6m (McGarry et al. 

1989). Soil carbon storage is of greatest interest in this study. For our subsequent 

analyses, carbon was assessed on a volume basis (kg m
-3

) of which was derived from 

the measured organic carbon percentages using pedo-transfer functions. 

 

 
Figure 1. The Edgeroi study area 

2.2 Environmental Data 

A number of environmental covariates were sourced and interpolated onto a common 

grid of 90m resolution. These included:  

• 3 arc-second (90m) digital elevation model (DEM). First and second 

derivatives, namely: slope, aspect, terrain wetness index (TWI), flow length, 
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slope length factor (LS-factor), area above channel network (AOCN) and 

stream power index (SPI) were determined.  

• Landsat 7 ETM+ images from 2003. The Landsat bands were used for the 

estimation of land cover and land use. Vegetation cover and type was estimated 

using the Normalised Difference Vegetation Index (NDVI). Furthermore, the 

band ratios or more commonly, soil enhancement ratios of b3/b2, b3/b7 and 

b5/b7 were also derived.  

• Gamma-radiometric survey data (Geosciences Australia 2008), which provides 

a measure of the spatial distribution of three radioactive elements (potassium-

K, thorium-Th and uranium-U) in the top 30-45 cm of the earth’s crust. This 

data was used to determine the distribution of various parent materials over the 

landscape. 

2.3 The Equal-Area Smoothing Spline 

The spline model we used is a generalisation of the quadratic spline model of Bishop 

et al. (1999). The model by Bishop et al. (1999) is when data are averages over 

adjacent horizons or layers in a soil profile. The model used in this paper is more 

general where the data are again averages of soil layers, but the supports of the data are 

not adjacent. 

Splines were fitted to each of the 341 point using code written in Matlab 

(Mathworks 2005). For modelling purposes, the mean values at depth intervals; 0–10, 

10–20, 20–30, 30–40, 40–50, 50–70, 70–80 and 80–100cm were derived from the 

splines. 

2.4 Data Analysis and Modelling 

JMP software (SAS) was used to construct neural networks for the depth-wise 

modelling of carbon storage. Prior to this, 50 data points were randomly selected and 

omitted from the dataset for the purpose of model validation.  

Firstly, a neural network was constructed using only the DEM data and derived 

terrain attributes as predictor variables. Secondly, using the best combination of 

environmental factors as determined from stepwise regression another neural network 

was constructed. Profile formulae for each depth interval were saved for later use to 

predict in areas where data observations were not available. Residuals were calculated 

and then kriged (local) onto the common 90m grid.  

For model validation, the profile formulae were applied to the 50 withheld data 

points. Residuals, calculated by inverse kriging from the 90m grid of residuals were 

added to the estimated depth values to give an amended prediction. Splines were then 

reconstructed and then compared to the raw data values as derived from the inputs 

provided by McGarry et al. (1989).     

Using the best neural network, the profile formulae were applied to the common 

90m grid geo-database in order to map total carbon storage for the study area. The 

kriged residuals were added to the predictions. For demonstration of functionality, the 

resulting geo-database of soil information generated in this study was queried to 

determine the depth at which carbon storage decreases to below 1% using computer 

programming code written in Matlab (Mathworks 2005).   

3. Results 

Table 1 shows the best combination of terrain attributes used for each layer. In the top 

depth interval (0–10cm) all terrain attributes except flow length were pertinent where 
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35% of variation could be explained. Elevation is critical at all depth intervals except 

at 80–100cm. Other important factors include altitude above channel network, stream 

power index and terrain wetness index.  

 

Depth Interval (cm) Terrain Attributes R
2 

0–10 Elevation, aspect, slope, 

terrain wetness index 

(TWI), altitude above 

channel network (AOCN), 

LS-factor, stream power 

index (SPI) 

35% 

10–20 Elevation, AOCN, LS-

factor, SPI 

22% 

20–30 Elevation, AOCN, SPI 12% 

30–40 Elevation, AOCN, SPI 11% 

40–50 Elevation, AOCN, TWI, 

SPI 

12% 

50–70 Elevation, AOCN, TWI, 

flow length, SPI 

15% 

70–80 Elevation, AOCN, TWI, 

flow length, SPI 

16% 

80–100 TWI, AOCN, flow length, 

SPI 

12% 

Table 1. Depth wise variation in terrain attributes to predict soil carbon storage 

With the inclusion of other environmental factors, the most parsimonious 

combination was found to comprise of elevation, slope, and altitude above channel 

network, stream power index, potassium (from radiometric survey), and Landsat bands 

#3, #4 and #5 and the band ratios 3/7and 5/7. On average 35% of the variation could be 

explained with these factors.  

Using all the available terrain attributes as factors, the neural network for carbon 

prediction was found to explain 57% of the variation. Upon the automated cross-

validation procedure, 0% of dataset could be accurately modelled. Conversely, using 

the most parsimonious set of environmental factors, the neural network model 

explained 60% of the variation. 4% of the variation was explained when the model was 

cross-validated. 

Five data points were selected at random from the 50 validation points to 

graphically represent model predictions with the raw values derived from McGarry et 

al. (1989) (Fig. 2) As expected, the fitted splines, fit closely to the raw data. When 

using the terrain attributes only or the best combination of factors, the predictions 

display a fair agreement with the raw data values. The fits from both neural networks 

at ed002, ed147 and ed218 (Figures 2a, c, d) are reasonably similar. However, at ed044 

and ed340 it appears that using the most parsimonious set of factors generates more 

accurate results (Figures 2b, e).  
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Fitted splines to raw 

data 

Fitted splines predicted 

with only terrain attributes 

Fitted splines predicted 

with best set of 

environmental covariates 

 

Figure 2. Fitted splines (dashed lines) of raw data and carbon predictions using either 

terrain attributes only or the most parsimonious set of environmental factors. 

(Polygons are the raw data values from McGarry et al. 1989). 
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b) 

a) 
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The model with the best combination of environmental factors was used to map 

total carbon storage in the soil across the study area. Soil carbon ranged between 1–

80kg m
-2

 to a depth of 1m
 
(Figure 3). The total average carbon storage was 9.5kg m

-2
, 

with the highest levels found to the eastern and southern sections of the area (8–80kg 

m
-2

). These areas coincide with landuse not dedicated to cropping for example in 

forested areas, along watercourses and grazing areas. The cropping areas, situated in 

the northern and western sections of the area have the lowest carbon storage (1–7kg m
-

2
).   

 

Figure 3. Total carbon storage across the Edgeroi study area. 

As can be observed in Figure 4 the depth at which soil carbon drops below 1% is 

quite variable across the study area where it ranges from 1cm to over 1m, with the 

average depth at 21cm. The cropping areas situated mostly to the western areas of the 

study area have the highest concentration of soils where in the top 5cm, soil carbon 

falls below 1%. Conversely, the areas that do not appear to be cropped maintain soil 

carbon levels above 1% to greater depths. The range of depths at which soil carbon 

decreases to below 1% is much larger than that observed in the areas where cropping is 

practiced and would be predominantly due to land use (grazing as apposed to dense 

vegetation etc) and other factors such as parent materials and proximity to waterways.    
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Figure 4. Depth at which soil carbon decreases to below 1% across the Edgeroi study 

area. 

4. Discussion and Conclusions 

Previous studies have identified the impact that land use has on soil carbon storage 

where areas under remnant vegetation have considerably more soil carbon than areas 

that have been cleared and used for agricultural pursuits (Knowles and Singh 2003). A 

similar trend was observed for this particular project. Additionally, the generated 

results of total carbon storage in the Edgeroi area are reflective of those of Minasny et 

al. (2006) who used an exponential decay to model soil carbon storage.  

Alone, the terrain attributes provide a valid framework in which soil carbon can be 

mapped both vertically and laterally as observed by the re-constructed splines at 

certain points. This would indicate that the geomorphology of the study area is partly 

deterministic of the variation of soil carbon where elevation, slope, altitude above 

channel network and stream power index are important attributes. However, without 

the inclusion of other environmental factors the predictive accuracy of the model 

framework is reduced by comparison.  

Nevertheless, this study provides an example where a rich soil attribute geo-

database can be generated from a limited soil dataset. The functionality of this 

database for enquiry will suit the purposes of people concerned with the management 

of land. However, future work will attempt to address some of the structural and 

metrical uncertainty identified in this study.  
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