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Abstract—This paper provides expressions and results for a
family of saddle surfaces that includes the simple saddle and
lesser-known monkey saddle as well as an infinite sequence
of higher-order saddles that includes what could be called
starfish and octopus saddles. Saddles often occur in real
topography along drainage divides. Traversing a drainage
divide involves repeatedly moving from a peak down a de-
scending ridgeline to a saddle point and then up an ascending
ridgeline to another peak. Peaks that are similar to monkey
saddles also occur in real topography and are discussed. A
derivation is given that provides polynomial expressions for
an infinite family of high-order saddle surfaces. In addition,
interesting general expressions are given for the plan, profile
and streamline curvatures of these surfaces. While interesting
on their own, these surfaces can also be used as test surfaces
for geomorphometric analysis and algorithms.

I. INTRODUCTION

A simple saddle surface, with the saddle point located at
the origin, is given by

f(x, y) = x2 − y2. (1)

This function is also known as a hyperbolic paraboloid.
The function f(x, y) = 2x y is a rotated version of the
same surface. A more exotic type of saddle surface is the
monkey saddle

f(x, y) = x3 − 3x y2. (2)

This saddle is so-named because it could be used by a
monkey; it has places for two legs and a tail. Figure 1 shows
a color shaded relief image for Mount Sopris, in Colorado,
USA. Mount Sopris has two peaks of equal elevation known
as West Sopris and East Sopris. West Sopris, though similar

Fig. 1. Shaded relief image for Mount Sopris, Colorado.

to a monkey saddle, is actually a peak and not a true saddle.
A simple saddle occurs between the two peaks.

II. HIGHER-ORDER SADDLE SURFACES

Polynomial expressions for a whole family of higher-
order saddle surfaces can be obtained as follows. Thinking
in terms of polar coordinates, we see that the simple saddle
has 2 minima and maxima as we move along a circle
centered at the origin while the monkey saddle has 3 of
each. Since cos(n θ) has n minima and n maxima as θ
varies from 0 to 2π, any function in polar coordinates (r, θ)
of the form f(r, θ) = F (r) cos [n (θ + θ0)] corresponds to
a saddle of order n. We can generate a particular family of
n-saddles such that the first two are the simple saddle and
monkey saddle by taking F (r) = rn and θ0 = 0 to get

fn(r, θ) = rn cos (n θ) . (3)
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Converting directly to Cartesian coordinates we get

fn(x, y) =
(
x2 + y2

)n/2
cos [n (arctan(y/x))] (4)

but unlike (1) and (2), this isn’t in the form of a simple
polynomial. To get an expression in that form, consider the
complex function

z(r, θ) = rnei n θ = rn [cos(n θ) + i sin(n θ)] (5)

where i is the imaginary number given by i =
√
−1. The

second equality is from Euler’s identity and shows that the
real part of z(r, θ) is our n-saddle function, fn(r, θ). (Let
gn(r, θ) denote the imaginary part, for later use.) Now since
ei n θ =

(
ei θ
)n, we also have

z(r, θ) = rn [cos(θ) + i sin(θ)]n (6)

= [r cos(θ) + i r sin(θ)]n (7)

= (x+ i y)n (8)

=

n∑
k=0

(
n

k

)
xn−k yk ik. (9)

Here we’ve converted back to Cartesian coordinates and
then applied the binomial formula. So the real part of this
polynomial gives another expression for our family of n-
saddles. Since imaginary terms only occur for odd values
of k, we get the real part by restricting the sum to even
values of k

fn(x, y) =

n∑
k=0,

k even

(
n

k

)
xn−k yk ik. (10)

Keep in mind that i2 = −1, i3 = −i and i4 = 1. From this
formula, f1(x, y) = x and the first 4 saddle surfaces are
found to be

f2(x, y) = x2 − y2 (11)

f3(x, y) = x3 − 3x y2 (12)

f4(x, y) = x4 − 6x2 y2 + y4 (13)

f5(x, y) = x5 − 10x3 y2 + 5x y4. (14)

It seems reasonable to call an order 5 saddle a starfish
saddle (see Figure 4) and an order 8 saddle an octopus
saddle. If we had taken the imaginary part of z(r, θ) instead

Fig. 2. A simple saddle, f2(x, y) = x2 − y2.

Fig. 3. A monkey saddle, f3(x, y) = x3 − 3x y2.

of the real part, which we denoted earlier as gn(r, θ), we
would have obtained polynomial expressions for versions
of our n-saddle family that have been rotated by 90 degrees.
Note that g1(x, y) = y and the first 4 saddle surfaces are

g2(x, y) = 2x y (15)

g3(x, y) = 3x2 y − y3 (16)

g4(x, y) = 4
(
x3 y − x y3

)
(17)

g5(x, y) = 5x4 y − 10x2 y3 + y5. (18)
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A. Slopes of Saddle Surfaces

Slope, S(x, y), can be defined for each point on a surface,
f(x, y), as the magnitude of the gradient vector, ∇f . In
Cartesian coordinates we have ∇f = (fx, fy, 0) = fx î +

fy ĵ and S(x, y) =
√
f2x + f2y . The subscripts x and y here

denote partial derivatives. In polar coordinates we have

∇f = (fr, fθ/r) = fr r̂ + (fθ/r) θ̂ (19)

S(r, θ) = |∇f | =
√
f2r + (fθ/r)

2. (20)

Applying this formula for S(r, θ) to (3), we get

S(r, θ) = n rn−1. (21)

This somewhat nonintuitive result shows that the slope for
any of these saddle surfaces depends only on the distance
from the origin, r. In mathematics, a saddle point is a point
in the domain of a function where the function has slope
zero (called a stationary or critical point) but that is not an
extremum (a pit or peak). The origin (r = 0) is a saddle
point for every saddle in our two saddle families.

B. Curvatures of Saddle Surfaces

In Cartesian coordinates, plan curvature of a surface,
f(x, y), is given by

κc(f) = −S−3
(
f2y fxx − 2 fx fy fxy + f2xfyy

)
. (22)

We can use the Mathematica symbolic math software to
quickly compute this for (4). Converting the result back to
polar coordinates we get

κc(r, θ) =
(n− 1) fn(r, θ)

rn+1
. (23)

This is interesting because the resulting expression is so
simple and just rescales the saddle surface itself by a
function of r. Profile curvature is given by

κp = −S−2
(
f2x fxx + 2 fx fy fxy + f2y fyy

)
. (24)

Computing this for (4) we get

κp(r, θ) =
−n(n− 1)fn(r, θ)

r2
. (25)

This is again simple and rescales the saddle surface itself
by a function of r. Streamline curvature is given by

Fig. 4. A starfish saddle. f5(x, y) = x5 − 10x3 y2 + 5x y4.

κs = −S−3
[
fx fy (fxx − fyy) +

(
f2y − f2x

)
fxy
]
. (26)

See [1] for a discussion of plan, profile and streamline
curvature. Computing this for (4) we get

κs(r, θ) =
(n− 1) gn(r, θ)

rn+1
. (27)

This is again simple and now rescales a rotated version of
the saddle surface, as denoted previously by gn(r, θ), by a
function of r.

C. Classification of Saddle Surfaces

The Gaussian curvature, K, gives a measure of the
overall or net curvature at a point (x, y) and can be
computed for a surface, f(x, y), as

K =
fxx fyy − f2xy
(1 + S2)2

. (28)

A point (x, y) is classified as elliptic if K > 0, parabolic
if K = 0 and hyperbolic if K < 0. Peaks and pits are
elliptic and the center point of a simple saddle is hyperbolic.
Note also that peaks, pits and saddles are critical points
where S = 0. Using (28), it can be shown that all points
on a simple saddle (n = 2) are hyperbolic and all points
except the origin are hyperbolic for higher-order saddles
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with n > 2. However, for the saddle surfaces with n > 2,
the origin is a parabolic point. This means that the higher-
order saddles are very flat in the neighborhood of the origin,
but they are still saddle points.

III. A WAVY SKIRT SURFACE

When we examine the West Sopris “monkey saddle”
more closely, we find that the center point is actually a
peak, not a saddle point. Linear transects that start at the
center show that elevations decrease in a linear manner as
we move outward along any of the 3 ridges or valleys.
However, a slight generalization of a saddle surface which
we will call a wavy skirt surface allows us to capture these
observations, namely

fn(r, θ) = a r [cos (n θ)− b] . (29)

As compared to a high-order saddle, this surface has linear
r-dependence and a shifted function of θ. The origin is now
a peak and no longer a saddle point. Fig. 5 shows an exam-
ple where n = 5, a = 1/2, and b = 3/2. Note that the ridge
tops of (29) occur where cos(n θ) = 1, or θk = 2k(π/n),
k ∈ {0, ..., n−1}. Similarly, the valley bottoms occur where
cos(n θ) = −1, or θk = (2k + 1)(π/n). Elevation as a
function of r is then given by zr(r) = a (1 − b) r on a
ridge top and zv(r) = −a(1 + b) r in a valley bottom. So
assuming a > 0, longitudinal profiles for both ridge tops
and valley bottoms will be decreasing, linear functions of
r only if b > 1. A surface given by (29) with n = 3 and
b > 1 therefore provides a better model for a peak like West
Sopris. However, the slope of this surface depends only on
θ and is degenerate (i.e., it is multiple-valued) at the peak
(r = 0).

IV. CONCLUSIONS

Mathematical expressions for saddle surfaces in terms
of polar coordinates often take the form of a product
fn(r, θ) = F (r)G(n θ), where F is a function of r
and and G is a periodic function of θ. Results from
complex number theory can be used to derive equivalent,
polynomial expressions for two high-order saddle families
of this type in terms of Cartesian coordinates. The two
families differ by a simple rotation. These families include

Fig. 5. A variant of the starfish saddle, here called a wavy skirt of
order 5.

saddles of arbitrary order n > 1, and therefore include
simple, monkey, starfish and octopus saddles as special
cases. General expressions for slope and three types of
curvature (plan, profile and streamline) are also given
for these two saddle families. These results can be used
as benchmark tests for the algorithms that are used in
geomorphometry to analyze real topographic surfaces.

While real topographic surfaces have features that are
very similar to monkey saddles and other high-order sad-
dles, the author is unaware of cases that are true saddles
with order n > 2. An examination of the west peak of
Mount Sopris shows that elevations decrease linearly from
the peak along any of the three ridges or three valleys
that meet at the peak. A modified saddle surface called a
wavy skirt surface was introduced in order to capture these
features.
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