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Abstract—In order to properly evaluate different algorithms
for computing the total contributing area (TCA) and specific
contributing area (SCA) from DEMs, it is important to have
mathematical test surfaces for which these quantities can be
computed in closed form. In previous work, the inverted cone
and inclined plane have been used for this purpose because
they are the only mathematical surfaces for which closed-
form results were available. Note that the various algorithms
differ most in terms of how well they work on divergent
topographic surfaces where streamlines diverge, and several
different algorithms based on multiple flow directions have
been developed for this case. The purpose of this paper is to
show how TCA and SCA can be computed mathematically
and to provide several new examples of test surfaces for which
results can be given in closed form. These new results are
then briefly compared to results from an advanced method
for computing TCA and SCA from DEMs called the mass
flux method. More detailed comparisons to results from this
and other methods will be presented later in a full paper.

I. INTRODUCTION

For a divergent, radially-symmetric surface, both the
TCA and SCA can be computed in closed form (Gruber
and Peckham, 2009). As shown in Figure 1, the TCA of
a pixel with ∆y = ∆x, centered at (x, y) = (i∆x, j∆x),
where i and j are integers and m = |i|+ |j|, is given by

A (i, j) =


∆x2 (m+ 1) /2, if i 6= 0 and j 6= 0

∆x2
(
m+ 3

2

)
/2, if i = 0 xor j = 0

∆x2, if i = 0 and j = 0.

(1)

Even though this expression is exact, the middle case is
responsible for an odd-looking “artifact” along the axes.
The width of a pixel, as projected toward the origin, is

w(x, y) = ∆x [| sin (θ) |+ | cos (θ) |] (2)

=
∆x (|x|+ |y|)√

x2 + y2
, (3)

where θ(x, y) = tan−1(y/x) and we used the identi-
ties sin(tan−1(x)) = x/

√
1 + x2 and cos(tan−1(x)) =

1/
√

1 + x2. The SCA is therefore given by

a(x, y) = lim
∆x→0

A(x, y)

w(x, y)
=

√
x2 + y2

2
. (4)

It depends only on distance from the origin.

Note: If we instead place the origin/peak at a pixel
corner, four pixels will share the peak and we get a single
expression for all pixels, A(i, j) = ∆x2 (m+ 1) /2, where
m = |i + 1

2 | + |j + 1
2 |, x = (i + 1

2)∆x, y = (j + 1
2)∆x.

This change appears to remove the “artifact” associated
with the middle case in equation (1).

II. BACKGROUND

A. Orthogonal Curvilinear Coordinate Systems

An orthogonal curvilinear (OC) coordinate system with
coordinates u and v can be specified relative to Cartesian
coordinates x and y by a transformation x(u, v), y(u, v).
The inverse of the transformation is denoted by u(x, y),
v(x, y). In order for curves of constant u and constant
v to be orthogonal, we must have xu xv + yu yv = 0,
where the subscripts denote partial derivatives with respect
to u and v. In two dimensions, two functions of u and v
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Fig. 1. For a divergent, radially-symmetric surface, such as an inverted
cone or a Gaussian hill, the TCA for pixels can be computed analytically.
Each necktie region shown can be broken into two colored triangles.
Triangles below the line y = m∆x − x (here m = 9) each have
base and height given by: b =

√
2∆x and h =

√
2m∆x/2, so their

area is, A = m∆x2/2. Triangles above the line each have an area of
∆x2/2. This shows that pixels A–D (and those in between) each have
TCA = ∆x2 (m+ 1) /2. Note, however, that pixel E has TCA =
∆x2

(
m+ 3

2

)
/2.

known as metric coefficients determine the local amount
of “stretching” associated with the transformation, denoted
here by ρ(u, v) and σ(u, v). Lengths along curves of
constant u and v are obtained by integrating ρ and σ,
respectively. The metric coefficients and their product, J ,
called the Jacobian of the transformation are given by

ρ(u, v) =
√
x2
u + y2

u (5)

σ(u, v) =
√
x2
v + y2

v (6)

J(u, v) = ρ(u, v)σ(u, v). (7)

See Peckham (1999) for an application of these concepts
to the problem of finding closed-form solutions to a class
of nonlinear partial differential equations (PDEs), which
includes a PDE for idealized, steady-state landforms.

TABLE I
ORTHOGONAL CURVILINEAR COORDINATE SYSTEMS

Radial Parabolic Elliptic
x(u, v) u cos(v) (u2 − v2)/2 a cosh(u) cos(v)
y(u, v) u sin(v) u v a sinh(u) sin(v)

ρ(u, v) 1
√
u2 + v2 a

√
sinh2(u) + sin2(v)

σ(u, v) u ρ(u, v) ρ(u, v)

u(x, y)
√
x2 + y2 −

√
x+ r − cosh−1 [K(x, y)]

v(x, y) tan−1(y/x) + c −y/u(x, y) sec−1 [(a/x)K(x, y)]

where r =
√
x2 + y2, K(x, y) =

√
G(x/a, y/a)/2

and G(x, y) = 1 + r2 +
√

1 + 2 (r2 − 2x2) + r4.

B. General Expressions for TCA and SCA

For any orthogonal curvilinear (OC) coordinate system,
the area bounded by two constant-u curves (u = u1 and
u = u2) and two constant-v curves (v = v1 and v = v2) is
given by the integral

A (u1, u2, v1, v2) =

∫ u2

u1

∫ v2

v1

J(u, v) du dv. (8)

The SCA can then be computed (Gallant and Hutchinson,
2011) as

a (u1, u2, v) = lim
∆v→0

A (u1, u2, v, v + ∆v)

σ(u1, v) ∆v
. (9)

This expression for A can also be used to get approximate
values on a rectilinear grid that differ from the exact values
by no more than ∆x2/2. Given closed-form expressions
for u(x, y) and v(x, y), the u-value of each grid cell (say
u1) can be computed from the xy coordinates of its center.
Similarly, v1 and v2 can then be computed from the xy
coordinates of two opposite corners of the grid cell. The
values u1, v1 and v2 — together with u2 as the (maximum)
u-value of the ridge or peak — can then be inserted into
(8) to get the TCA for the given grid cell. SCA can be
computed more simply by computing u and v from the xy
coordinates of each grid cell’s center and inserting into (9).

III. RADIALLY-SYMMETRIC SURFACES

Any surface with radial symmetry, including a Gaussian
hill and an inverted cone, will have its contour lines and
streamlines given by a “radial” OC coordinate system (see
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Table I, column 1). Contour lines are curves of constant
radius, u, and streamlines are curves of constant azimuth
angle, v. Elevation is given by z = H(u) for some function,
H . Equation (8) then simplifies to

A (u1, v1; u2, v2) = (v2 − v1)
(
u2

2 − u2
1

)
/2 (10)

For a grid cell centered at (x, y), with sides of length ∆y =
∆x, and taking u2 = 0, we then have

F (x, y) = tan−1

(
2y + ∆x

2x−∆x

)
− tan−1

(
2y −∆x

2x+ ∆x

)
(11)

G(x, y) =
(
x2 + y2

)
/2 (12)

A (x, y) = F (x, y)G(x, y). (13)

On the diamond-shaped curves where |x| + |y| = c,
we can eliminate y in G(x, y) and F (x, y). This gives
G(x, y) = (2x2 − 2c |x| + c2)/2, and the first term in a
Taylor series of F (x, y) in ∆x about 0 gives F (x, y) ≈
c∆x/

(
2x2 − 2c |x|+ c2

)
. As a result, the TCA on these

curves is approximately c∆x/2, consistent with the exact
result obtained in the Introduction. Using (9) to compute
the SCA returns us to (4).

IV. SURFACES BASED ON PARABOLIC COORDINATES

The parameters for a parabolic OC coordinate system
are given in Table I (column 2) where u ≤ 0 and v ≥ 0.
For any surface with z = H(u), the TCA and SCA can be
computed using (8) and (9) as

A (u1, v1; u2, v2) = [ (v2 − v1)
(
u3

2 − u3
1

)
+ (u2 − u1)

(
v3

2 − v3
1

)
]/ 3 (14)

a (u, v; u2) =

(
u3

2 − u3
)

+ 3 v2 (u2 − u)

3
√
u2 + v2

. (15)

For the surface shown in Figure (2), we have z = u with
the ridgeline given by the curve u = u2 = 0. SCA can be
computed as

a (x, y) =

√
2

3
·
[
r (2r + x)− x2

]√
r (r + x)

, (16)

where r =
√
x2 + y2. Contours of elevation and SCA are

shown in Figure (3).

Fig. 2. A divergent surface with contours and streamlines given by
a parabolic coordinate system with z(x, y) = u(x, y). The ridgeline is
given by u = 0 and runs from x = −∞ to x = 0 (with y = 0).

Fig. 3. For the surface in Figure 2: (a) Contours of elevation. Both
contour lines and streamlines are given by parabolas. (b) Contours of
SCA. SCA is zero on the ridgeline (purple). High values are red and
low values are blue.

V. SURFACES BASED ON ELLIPTIC COORDINATES

The parameters for an elliptic OC coordinate system are
given in Table I (column 3), where u ≤ u2 and v ∈ [0, 2π].
For any surface with z = H(u), TCA can be computed as

A (u1, v1; u2, v2) =
(a

2

)2
[(u2 − u1)F (v1, v2)

+ (v1 − v2)G(u1, u2)] (17)
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Fig. 4. For the surface based on elliptic coordinates (z(x, y) = u(x, y)):
(a) Contours of elevation. Contour lines are given by ellipses. Ridgeline
is given by u = 0, and runs from x = −a to x = a (with y = 0). (b)
Contours of SCA. SCA is zero on the ridgeline (purple). High values
are red and low values are blue.

where

F (v1, v2) = sin (2 v1)− sin (2 v2) (18)

G(u1, u2) = sinh (2u1)− sinh (2u2) . (19)

Similarly, the SCA can be computed using (9) as

a (u, v; u2) =
a [B(u2, v)−B(u, v)]

4
√

sin2 (v) + sinh2 (u)
(20)

B(u, v) = sinh (2u)− 2u cos (2 v) . (21)

Contours of elevation and SCA are shown in Figure (3)
for the case z = u, where the ridgeline corresponds to the
curve u = u2 = 0.

VI. RESULTS FOR THE MASS FLUX METHOD

Figures (5) and (6) show the SCA as computed using the
Mass Flux Method for a radially symmetric surface and
for surfaces based on parabolic and elliptic coordinates.
Note that the “artifact” that results from the exact TCA
calculation is inherited by the SCA figures. The agreement
between values computed mathematically and using the
Mass Flux Method is quite good. However, work is ongoing
to determine how best to remove the artifact. More com-
plete results, including tests of other methods for computing
TCA and SCA will be presented in a full paper.

Fig. 5. TCA (a) and SCA (b) for a radially-symmetric surface, as
computed with the Mass Flux Method in RiverTools 4.0. High values
are red and low values are blue.

Fig. 6. SCA for surfaces based on parabolic (a) and elliptic (b)
coordinates, computed with the Mass Flux Method in RiverTools 4.0.
Edge effects are expected in (a). High values are red, low ones are blue.
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