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Abstract— The dynamic ecosystem model LPJ-GUESS includes 14 

explicit representation of vegetation dynamics as well as soil 15 

biogeochemistry, and has been widely and successfully 16 

implemented in predicting vegetation biomass and carbon cycling 17 

at different scales. However, the water cycling for each grid cell in 18 

the model is only considering the movement between atmosphere, 19 

vegetation and soil, ignoring the lateral water movement between 20 

grid cells. A previous study has proposed a distributed scheme in 21 

LPJ-GUESS incorporating topographic indices to redistribute 22 

lateral water movement, and has demonstrated the impacts on 23 

ecological functioning and carbon cycling at the Stordalen 24 

catchment, northern Sweden. The topographic indices, extracted 25 

based on a Digital Elevation Model (DEM), were based on a single 26 

flow (SF) algorithm at 50 m resolution, restricting the flow 27 

movement to the downslope cell with maximum gradient. In this 28 

study we have incorporated the Triangular Form-based Multiple 29 

Flow algorithm (TFM) to redistribute lateral water in LPJ-GUESS 30 

and analyzed the influences and differences between the two flow 31 

algorithms on runoff prediction as well as carbon cycling 32 

estimations. The results indicate that the runoff estimated by the 33 

TFM algorithm is more realistic than the SF algorithm. Besides, the 34 

comparison with observed runoff data demonstrates the monthly 35 

runoff estimated using the SF algorithm tends to overestimate the 36 

runoff in May and June as well as in the lower flatter peatland 37 

region. For the TFM algorithm, the underestimated runoff during 38 

the growing season can be compensated by the decreased soil depth 39 

in the elevated area. Moreover, the implementation of the TFM 40 

algorithm results in a significant increase of the catchment mean 41 

value of vegetation uptake of carbon as well as net ecosystem 42 

exchange carbon. We conclude that the advanced multiple flow 43 

algorithm (TFM) with more accurate estimation of flow 44 

accumulation can improve the hydrological predictions in LPJ-45 

GUESS. Meanwhile, the results have proved that the flow routing 46 

algorithms do influence the vegetation pattern estimations for the 47 

study area.   48 

 INTRODUCTION  49 

LPJ-GUESS is a dynamic ecosystem model, simulating 50 

vegetation dynamics as well as soil biogeochemistry [Sitch et al., 51 

2003; Smith et al., 2001]. The model has been successfully 52 

implemented in predicting vegetation biomass, carbon balance, 53 

and carbon cycling at local and global scales [Ahlström et al., 54 

2012; Hickler et al., 2004]. However, as an ecosystem model, the 55 

water cycling [Gerten et al., 2004] is only limited to the 56 

interactions between atmosphere, plants and soil [Wolf, 2011]. 57 

There is no consideration of lateral water movement. A previous 58 

study proposed a distributed scheme by implementing 59 

topographic indices to add lateral water movement in LPJ-60 

GUESS to conquer this limitation, and was renamed as LPJ-61 

Distributed Hydrology (LPJ-DH) [Tang et al., In Review]. The 62 

topographic indices, including drainage area (DA), flow direction 63 

(Fdir) and slope (S) are extracted from a Digital Elevation Model 64 

(DEM). Through applying Fdir to direct the generated runoff to 65 

downslope cells and using DA to organize the processing 66 

sequence, the new proposed LPJ-DH allows water flow between 67 

grid-cells, which is directly influencing the amount of vegetation 68 

available water as well as the runoff. The single flow algorithm 69 

(SF) [O'Callaghan and Mark, 1984] based on a gridded DEM 70 

was chosen for this application, assuming that surface flow only 71 

occurs in the steepest downslope direction.  72 

The SF algorithm used in the previous study, in comparison to 73 

multiple flow algorithm (MF), restricts the divergence in 74 

estimating lateral flow paths [Hasan et al., 2012; Zhou et al., 75 

2011] and therefore could influence the soil moisture and 76 

vegetation pattern estimations [Guentner et al., 2004]. Many 77 

studies have suggested different methods of handling the multiple 78 

flows, and the majority work is based on gridded DEMs. 79 

However, due to the regularly spaced samplings on the 80 

continuous surface the gridded DEM could produce inconsistent 81 

flow paths [Zhou et al., 2011], especially for coarser scales. To 82 

overcome the limitations of the gridded structure of the DEM, the 83 

newly-developed Triangular Form-based Multiple flow algorithm 84 
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(TFM) has been developed, based on the partition of grid cells in 85 

the DEM into triangular facets and redistribution of water 86 

proportionally to down-hill adjacent cells [Pilesjö and Hasan, 87 

2013]. In this way, the algorithm can better take into 88 

consideration the continuity using Triangulated Irregular 89 

Network (TIN). Besides, the improvements of flow routing over 90 

flat cells from the TFM algorithm was also evaluated [Hasan et 91 

al., 2012]. The TFM algorithm then showed the capability of 92 

producing the closest and consistent outcomes in relation to 93 

theoretical values of specific catchment area (SCA) compared to 94 

other methods. 95 

In this paper the TFM algorithm is implemented to estimate 96 

topographic indices and adapt the distributed scheme in LPJ-DH 97 

to fulfill the divergence flow routing paths. Through comparing 98 

the hydrological and ecological estimations after coupling SF and 99 

TFM algorithm in LPJ-GUESS (named LPJ-DH-SF and LPJ-100 

DH-TFM, respectively), we aim to answer the question how 101 

important the flow routing algorithms is in terms of modeled 102 

runoff and hydro-ecological variables at the catchment scale. 103 

METHODS 104 

The implementations of the SF and TFM algorithms are based on 105 

the same DEM, with the resolution of 50 m (to be consistent with 106 

the resolution of climate data). The main change in the LPJ-DH 107 

using the TFM algorithms is that the generated runoff can be 108 

directed to multiple downslope cells, instead of just one cell in 109 

the SF algorithm. So, the proportions of flow to downslope cells 110 

are added to each grid-cell as input attributes. Apart from that, in 111 

comparison with the single flow algorithm, the processing 112 

sequence of grid-cells for TFM cannot be uniquely determined 113 

by the values of DA alone, since some cells flowing to a 114 

downslope cell may have higher DA value. To overcome this 115 

problem, we found that implementing elevation (from higher to 116 

lower) together with DA values (from lower to higher) could 117 

uniquely decide the cell sequence for flow accumulation. A 118 

Matlab program was developed to test and make sure that the 119 

flow accumulation has been accomplished for the “upslope cells” 120 

before draining to “downslope cells”. 121 

The sub-surface water routing is also included, and its lateral 122 

water redistribution follows the same principles as the surface 123 

water part. For the subsurface part, only vertical water movement 124 

is considered for unsaturated soil, and the saturated subsurface 125 

runoff (Rsub(r,c)) is estimated by quasi three-dimensional flow 126 

developed by Wigmosta et al. [1994]: 127 
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KS is the saturated hydraulic conductivity varying with different 129 

soil types. zwt(i,j) is the distance from the ground surface to the 130 

water table (positive downward) and D(i,j) is the total soil depth. 131 

f is the decay coefficient of saturated conductivity with depth and 132 

w is the width of the flow. S(i,j) is the slope of the cell. The 133 

parameter values of KS and f are based on the literature. 134 

The modeled runoff is compared with observed runoff 135 

measurements and evaluated by the relative root mean square 136 

error (RRMSE). The closer value of RRMSE to zero, the better is 137 

the model performance [Stehr et al., 2008]. To reveal the 138 

different flow algorithms influences on carbon fluxes, the Mann-139 

Whitney U test was used. 140 
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STUDY AREA  142 

Stordalen catchment  143 

The Stodalen catchment is located in northern Sweden, about 144 

9.5 km from the Abisko Research Station (ANS). The whole 145 

catchment covers 16 km
2
 and consists of a mountainous area in 146 

the southern part, entering into the lower flat peatland area in the 147 

north (see Fig.1). The catchment hydrology has been reported by 148 

Persson et al. [2012] and Ryden et al. [1980] and  water-related 149 

carbon fluxes measurements have been presented by Olefeldt at 150 

al. [2012] and Lundin et al. [2013]. For this study, measured 151 

daily runoff during the year 2007-2009 was provided by Olefeldt 152 

et al. [2012] in order to evaluate the model runoff estimations.  153 

RESULTS  154 

Drainage area 155 

Presented in Fig.1, two different drainage patterns are estimated 156 

using the TFM (left) and the SF (right) algorithms. Through 157 

visual comparison, the TFM extracted drainage pattern shows 158 

smoother and more realistically looking spatial patterns than the 159 

SF estimated one. Additionally, the values of Ln(DA) from the 160 

SF algorithm are not smoothly increasing downhill, and the 161 

main drainage is more distinct.  162 

 163 

 164 

Figure 1.  Map of Ln(DA) using the triangular form-based (left) and the single 165 

algorithm (right). For each grid-cell, the value 1 is added before calculating the 166 

natural logarithm. The map is draped on a digital elevation model (enhanced five 167 

times). 168 

TABLE I.  STATISTICS OF DRAINAGE AREA FROM TFM AND SF 169 

ALGORITHMS 170 
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Algorithms Variables Mean Standard 

variation 

Skew 

SF Drainage area(DA) 51.840 303.562 11.274 

TFM Drainage area(DA) 40.770 235.093 12.690 

 

The results in Table 1 show that the TFM algorithm produces 171 

lower mean and variance values of DA and the higher and 172 

positive skew values indicate more cells with lower DA values 173 

when using the TFM algorithm. The allowances of flow 174 

divergence and consideration of consistency from the TFM 175 

algorithm reduce the DA average as well as the variances among 176 

cells. 177 

Monthly runoff comparison 178 

The daily runoff is summed up to get the monthly runoff, and the 179 

comparisons between observed and modeled runoff from LPJ-180 

DH-SF and LPJ-DH-MF are presented in Fig. 2. The RRMSE 181 

values vary from point to point, but generally, the runoff peak 182 

from LPJ-DH-SF is higher than the LPJ-DH-MF, especially for 183 

the peatland cell A2. For the point A1, located at the catchment 184 

outlet, the LPJ-DH-SF produces lower RRMSE values, which 185 

capture the high runoff better in June during the observed years. 186 

For the point A2, the overestimation of runoff by LPJ-DH-SF is 187 

converse with the underestimation by LPJ-DH-MF during the 188 

summer period. For the point B2, with steeper terrain, both 189 

models are underestimating the runoff, but the LPJ-DH-SF shows 190 

values closer to the observed (RRMSE=4.14). For the relatively 191 

dry years (2008 and 2009), the runoff predictions at B2 have 192 

larger underestimation bias. For the outlet points A5 and A6, 193 

located in the comparatively flat region, both models show 194 

almost the same accuracy. 195 

Going through the six measured points, for the LPJ-DH-MF the 196 

main discrepancy in runoff compared with observed data are the 197 

low runoff estimations in June. When the plants start to grow, 198 

there is more water supplying plants’ photosynthesis and growth 199 

as well as soil evaporation, thus less water can route downslope. 200 

The distributed flow used in the TFM makes the available water 201 

to the main drainage network even less. 202 

Carbon fluxes comparison  203 

Due to lack of field data of spatially distributed biomass and 204 

carbon fluxes, the comparisons are based on the statistical 205 

comparison of models estimations over the whole catchment. The 206 

Mann Whitney U-tests indicate that the differences are 207 

significant for vegetation uptake carbon (VegCflux) and net 208 

ecosystem exchange (NEE) for the two models. The LPJ-DH-MF 209 

model has around 1.34% and 7.41% increase (more carbon 210 

uptake) in VegCflux and in NEE, compared with the LPJ-DH-SF 211 

outputs. There is no indication of significant difference of soil 212 

respired carbon (SoilCflux) between the two models. However, a 213 

distinctively higher soil released carbon can be found for the 214 

main drainage network cells from LPJ-DH-SF (see the whisker 215 

extend for SoilCflux in Fig. 3), which is not appearing in LPJ-216 

DH-MF. 217 

 218 

Figure 2.  Point runoff comparisons between the modeled and the observed 219 

monthly runoff. There are no data for A2, A4 and A6 during the year 2009.  220 

 221 

Figure 3.  Catchment carbon fluxes diversity during the year 1981-2000. The 222 

asterisk (*) represents the statistical significance at the level of 0.05. 223 

DISCUSSION AND CONCLUSION 224 

In this study, the soil depth is set to 1.5 m, as the standard LPJ-225 

GUESS depth, but in reality the soil is quite shallow with bare 226 

rocks in the southern mountainous area. The soil depth needs to 227 

be adjusted in forthcoming studies for the elevated area of the 228 

catchment. With reducing the soil depth, the runoff is expected to 229 

increase compared with the models outputs presented in this 230 

paper, but to what magnitude is unknown. The current results 231 

illustrate that the SF algorithm generally produces higher runoff 232 

values than the observed in May and June, with the exception of 233 

point B2. When reducing the soil depth in the southern elevated 234 

area, the runoff during the high-runoff season will become higher 235 

using the SF algorithm since the water is concentrated to the 236 

main flow paths. However, that could have less influence for the 237 

LPJ-DH-TFM due to the dispersion of water over the catchment 238 
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and maybe compensate the underestimated runoff for LPJ-DH-239 

TFM.  240 

The allowance of flow divergence in the TFM makes the upslope 241 

area per unit contour length decreasing [Wolock and McCabe Jr, 242 

1995], which means there is less water accumulating for each 243 

downslope neighboring cell. In other words, there are more cells 244 

that could receive water from upslope cells which results in 245 

significant   changes in vegetation uptake carbon (total NPP) for 246 

LPJ-DH-MF. With larger catchment and water-limited area, the 247 

differences of flow routing on vegetation growth will be more 248 

pronounced.  249 

It is novel to evaluate two different routing algorithms by 250 

implementing them into a process-based ecosystem model. In 251 

this way, both the climate conditions and vegetation dynamics 252 

are taken into the consideration. Comparing with other studies of 253 

utilizing statistical correlations between topographic wetness 254 

index (TWI) and vegetation pattern to evaluate different routing 255 

algorithms [Kopecký and Čížková, 2010; Sorensen et al., 2006], 256 

our method is more accurate and could reveal more detailed flow 257 

algorithm differences/influences on hydrological estimations 258 

through the seasons. Besides, our method can avoid using TWI as 259 

a proxy for soil moisture conditions and can capture the effective 260 

contributing area over time. Nevertheless, with increased 261 

complexity of model structure, our method needs to be better 262 

calibrated before finally concluding which routing algorithm that 263 

is the best for different environments. 264 

To summarize, the more advanced multiple flow algorithm 265 

(TFM), producing more accurate estimations of flow 266 

accumulation can improve the hydrological predictions in LPJ-267 

GUESS. The comparisons of carbon fluxes outputs between LPJ-268 

DH-SF and LPJ-DH-TFM have demonstrated that the flow 269 

routing algorithms do matter not only for hydrological variables, 270 

but also for ecological estimations, within the study area. 271 
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