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Abstract– We present the results of a numerical experiment aiming 

at explaining reasons for classification errors when using an 

automatic pattern-based terrain classifications algorithm proposed 

by Jasiewicz et. al. [3]. We use composition of landform elements 

from incorrectly classified areas, and we use texture pattern from 

example areas to synthesize a new “terrain” which inherits 

properties from both sources. Using a new Pattern Analysis 

Toolbox (GeoPAT, [4,5]) we found that classification errors come 

from convergence of landscape properties: after replacing texture 

in misclassified areas with texture as indicated by an example area 

a new synthetic area shows higher degree of similarity to the 

landscape class from which it inherits texture. It allow to draw 

conclusion that short-range textural properties is that feature 

which at that moment best describes diversity of landscapes for 

automatic classifications. 

I.  INTRODUCTION 

One of the goals of geomorphometry is an automatic 
classification of terrain. Automatic classification is much faster 
than manual mapping (a significant advantage when working 
with big data sets) and the results are based on clearly defined 
rules. On the other hand automatic algorithm does not possess 
human “knowledge” about numerous hidden relations between 
entities in the data which leads to classification errors. Algorithm 
performance is based on assessment of classification error and is 
usually based on confusion matrix which compares amount of 
correctly classified examples with those which were classified 
incorrectly. Performance describes the quality of classifier and its 
real usefulness for automatic mapping. In classical machine 
learning performance is calculated using a test set – a set of 
objects for which a class is assigned by an analyst.  

With classification of landscapes [1] the problem of 
performance assessment is more complex. The assignment of a 
landscape to a particular landscape class is based not only on the 
information available in the data but also on a knowledge not 

described by a mathematical description of a landscape, such as 
location, relation to neighborhood, distance, direction and shapes 
of objects on several spatial scales. In addition, in 
geomorphometry, like in other natural sciences, we face the 
problem of the convergence. Surfaces created by different 
processes may have similar properties at the level of the data, 
thus cannot be correctly classified without additional information 
which is not a part of topographic data. 

In terrain classification errors appear for three reasons: (a) 
selection of inappropriate classifier, (b) lack of clear distinction 
between classes, and (c) gap between the information available in 
the data and the knowledge needed to make a correct 
classification. The third reason is rarely considered when 
performing automatic terrain classification. 

Jasiewicz and Stepinski [2] published a method for 
classification of landform elements from DEM data; their 
method, called geomorphons, uses computer vision approach 
rather than land-surface parameters to classify landform elements 
into ten types. A local landscape can be considered of a mosaic of 
landform element types. 

Recently, Jasiewicz et al. [3] demonstrated how to classify 
entire local landscape into landscape types (Fig. 1) using 
supervised learning methodology. In [3] a 30 m resolution DEM 
of the entire country of Poland was first transformed into a 
categorical map of landform elements using the geomorphons 
algorithm. This categorical map was then divided into a grid of 
overlapping square areas (300*300 cells each) and for every node 
in the grid a signature of a local landscape (pattern of landform 
element types) was calculated as a histogram of features where 
each feature is one of 55 possible connections between 10 
existing landform element types (see [3], [4] and [5] for details). 
Thus signature contains information on both, the composition of 
landform elements in the landscape, and their relative 
configuration (short-distance texture of the terrain). Based on the 
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expert knowledge 9 landscape types were selected to best 
describe variability of geomoprhological landscapes in Poland 
and example areas for these types were given. As similarity 
measure between local landscapes a modified Wave-Hedges 
measure was used which calculated weighted intersection 
between two signatures representing two landscapes. By default 
every local landscape can be similar to more than one landscape 
type because of aforementioned landscape convergence problem. 
The final single label for each local landscape was assigned using 
the most similar landscape type. Performance of the method 
proposed by Jasiewicz et. al. [3] gained 70% against the 
classification of landscapes in Poland made manually by 
Kondracki [6]. 

Our goal here is to investigate the reasons for 
misclassifications at the level of data description. Using a 
complex texture-composition signature (see [3]) we want to 
check what information affects the misclassification: general 
long-range (of the order of kilometers) composition of the whole 
area or short-range (order of tens of meters) textural properties. 
To solve the problem we run 2304 conditional simulations where 
as the source of information about the long-range composition 
we used misclassified areas and as a source of short-term texture 
we used examples of areas which were classified correctly. 
Simulation will change the texture of the area but will keep its 
general composition. The similarity between new simulated 
“landscape” and landscape types used as a source for 
composition component and texture component will answer 
which of those two elements plays more important role during 
classification process. 

II. DATA AND METHOD 

A. Study area 

To analyze the problem we use post-glacial developed areas 
across the central-European lowlands. One of them is a young, 
immature surface which preserves the original features remained 
after regression of the last glaciation. Those features are very 
slightly or even not changed by further denudation. The second is 
an older surface and include area which was not covered by ice 
during the last glaciations; its original postglacial features were 
transformed into a new assemblage under periglacial conditions 
[7]. The extension of last glaciation is well defined (Fig. 1), and 
we used only landscapes which represents class “moranic 
plateau” so an identification and selection of misclassified areas 
do not rise doubts. 

Areas within the reach of last glaciation (we will use the term 
"young glacial" in the rest of the paper) stands out by inclined 
slopes along narrow valleys, domination of undulated plains and 
numerous closed depressions alternated with small isolated hills; 
all together forms a very irregular pattern (See fig. 2, TP_04). On 

the other hand postglacial lowlands outside the extend of the last 
glaciation ("old glacial" in the rest of the paper) are due to 
substantial denudation under periglacial conditions characterized 
by smooth, wide and gently inclined slopes; channels with 
dendrite pattern, vast plains and lack of closed depressions. (see 
fig. 2, TN_10). The differences between those areas are 
expressed both in short-range textural properties represented by 
connection between individual cells and more general long range 
composition which is represented by amount and size of given 
terrain forms in the entire sample area. 

 

Figure 1.  Location of learning and testing areas. True Positives (TP): areas 

classified as young glacial plateaus and located inside the extent of last 

glaciation; True Negatives (TN): areas classified as old glacial plateaus and 

located outside the extend of last glaciation; False Positives (FP): areas classified 

as young glacial but located outside the extend of last glaciation; False Negatives 

(FN): areas classified as old glacial but located inside the extend of last 

glaciation. Labels on misclassified areas and these two correctly classified areas 

used as examples on fig. 2. 

B. Data 

To address our problem we selected 3 areas which were used 
as training examples in [3] both for young and old moraine 
plateaus. We defined them as True Positive (TP) and True 
Negative (TN) respectively (fig. 1). Also we choose 8 areas 
which undoubtedly are located on young and old areas but were 
classified inversely. We defined them as False Positive (FP) and 
False Negative (FN) respectively (fig. 1). 

C. Processing steps and implementation 

To simulate landscape patterns we used FILTERSIM 
algorithm [8], [9] implemented in the SGeMS software [10]. This 
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is an intermediate solution between the pixel and object-oriented 
simulations. Its essence is to use a reference image that is divided 
into small pieces. The algorithm classifies these pieces, and then 
assembles the image to fit the measurement data and previously 
arranged parts. The best analogy is perhaps that of building a 
puzzle. Resulting image should be as similar as possible to the 
reference (training) image, while keeping the data coming from 
the sample. The algorithm can be used to generate a desired set of 
simulations, whose variability is the result of different, random 
paths defining the stacking order of the pieces of which creates a 
whole. 

In our experiments we sampled composition from incorrectly 
classified surfaces (FN and FP), and used the patterns from 
surfaces of TP and TN previously used to train classifier (fig. 2). 
Each of the 8 selected misclassified surfaces (4 FP and 4 FN) of 
300*300 cells size has been subjected to 4 levels random 
stratified sampling (0.1, 0.2, 0.5, and 1% of whole data). These 
data was used as the source of texture during the simulations. For 
the evaluation of the simulations variability arising from the use 
of different random paths each one was repeated 3 times. One of 
the most important parameters that affect the quality of the result, 
is the size of the pieces (template size) which a master image is 
divided into. To assess its importance calculation was performed 
for the four sizes: 11, 15, 19 and 23 cells. Other parameters of the 
algorithm were left to the default settings [10]. In summary, for 
each tested FP and FN surface 288 simulations was performed (6 

training images × 4 sampling levels × 4 template size × 3 
repetitions), which gives a total of 2304 simulated surfaces (fig. 
2). 

All 2304 simulated areas were imported to GRASS GIS and 
used to calculate the similarity/distance matrix using GeoPAT 
software [4,5] using identical parameters for signature and 
similarity measure as described by Jasiewicz et. al. [3]. Similarity 
matrix was used to present results in a form of Sammon's map 
(fig. 3) which is a form multidimentional scaling which tries to 
map distance between objects in multidimentional space into the 
two dimentional plane. 

III. RESULTS 

On Fig. 3A we see two distinct groups of samples, one 
representing correctly classified young glacial samples (red, True 
Positive), the second correctly classified "old glacial" (green, 
True Negative). Misclassified old glacial and young glacial areas 
are marked as FP and FN respectively and show higher similarity 
to the different group than the area where they are really located. 
Samples which results form series of conditional simulations (Fig 
3B) show a much higher similarity to those areas from which 
sort-term pattern was taken, rather those which were provided as 
a source of long-range composition. 

 

 

 

Figure 2.  Example of simulations: misclassified young glacial area (upper row) old glacial area (lower row) with appropriate example of patterns used to simulate 
expected results. See text for details.
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Figure 3.  Classification of simulated areas on Sammon’s map. Top panel (A) 
shows similarity between correctly and incorrectly classified samples (real). 

Bottom panel (B) show similarity between real samples and simulated examples. 
Both group of simulated areas are more similar to the group of samples from 

which short-range pattern is taken rather than to the group used as a source for 
long-range composition. Differences between location of real samples on left 
and right panels are results of the properties of multidimensional scaling. The 
values on the axes represent the dimensionless distance (objects similarity). 

IV. CONCLUSIONS AND OUTLOOK 

We found that misclassification error comes from 
convergence of landscape properties: after replacing texture in 
misclassified area with texture taken from correctly classified 
example new simulated area showed higher similarity to that 
landscape class from which it inherits texture than general 
composition. It allow to draw conclusion that short-range textural 

properties is that feature which best describes diversity of 
landscapes for automatic classifications. 
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