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Abstract—Tools that derive terrain attributes from digital 

elevation models are common in geospatial software. Their 

accessibility permits applying geomorphometric techniques to a 

wide range of applications. These tools however, can be 

considered “black boxes” where the analysis and comparison of 

the internal workings of the technique are vague and cannot be 

assessed. Selecting the most effective set of tools for a given task 

can thus be challenging. This work presents a method for 

selecting an optimal set of terrain attributes that can help non-

expert GIS users make the best use of geomorphometry. The 

selection of terrain attributes aims to remove redundancy 

between attributes and maximize the amount of information 

given on a surface. We derived 230 terrain attributes from an 

artificial surface using 11 software. This approach is twofold: a 

pre-selection based on the ranking of attributes was first 

established using stepwise multicollinearity measures, followed 

by a final selection of attributes from a principal components 

analysis (PCA). The results show that using 13 independent 

terrain attributes can explain up to 83% of the variance for that 

particular surface: the combination of common attributes that 

are available in most GIS (i.e. aspect, basic curvatures, slope and 

a measure of rugosity) can explain 67% of the surface variance. 

The method proved efficient to reduce a high-dimensional list of 

terrain attributes to identify combinations of 13 attributes or less 

that can be used by non-expert GIS users.  

I.  INTRODUCTION 

Tools allowing geographic information systems (GIS) users 
to derive terrain attributes from digital elevation models 
(DEM) are increasingly available in GIS software. These 
attributes can be used for a wide range of purposes, such as 
explanatory variables or indicators in biological and ecological 
studies [1]. The algorithms implemented by the different 
software are not always specified and can often leave users 
with little choice of the appropriate algorithm and specific 
parameters to use. Since different algorithms can produce 

significantly different results [2], and that few studies outside 
of the field of geomorphometry report the methods used for the 
computation of terrain attributes [3], comparisons between 
studies can be misleading. Users are left with a large number of 
options and without guidance are often tempted to select a 
random or sub-optimal set of terrain attributes for their study 
using the GIS they are familiar with.  

Using a random selection of terrain attributes or all the 
available attributes from a specific software might result in 
outcomes that are not representative of the observed 
phenomenon, failing to capture the key properties of a terrain. 
For instance, being all derivatives from a same surface (the 
DEM), terrain attributes are likely to show a certain level of 
covariation [4]. Covariation between variables is known to 
influence performance of regression analyses [5] and other 
statistical models [4]. Since multicollinearity makes it difficult 
to distinguish the influence of individual drivers on a response 
variable [6], it is important to carefully select the terrain 
attributes in order to reduce that covariation. Analysts rarely 
assess multicollinearity between independent variables used in 
a regression analysis [7].  

This study aims to test a method that determines sets of 
terrain attributes that can (1) minimize multicollinearity 
between the selected attributes and (2) maximize the variance 
of the terrain explained by the selected attributes. Such sets of 
attributes could be used by GIS users to help create more 
robust models. 

II. METHODS  

A. Terrain Attributes 

A 1x1m resolution artificial surface covering an extent of 
106x106m was created using the spectral synthesis method in 
Landserf 2.3 (Figure 1). 230 terrain attributes were derived 
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from this surface using different software packages (Table I). 
Since some of the software only allow using a 3x3 window of 
analysis, all analyses were performed using this size of window 
to allow the inclusion of as many attributes as possbile. The 
terrain attributes tested are from general geomorphometry, i.e. 
are computed continuously across a surface, and include both 
local geometric and statistical attributes. Selected software 
include both commercial and open source software. To 
eliminate edge effects, the outer 6m were clipped, resulting in 
100x100m surfaces. Each terrain attribute was tested against 
the others to identify those giving strictly identical results, and 
thus likely to be using a same algorithm. Since the algorithms 
should only be accounted for once, only one attribute was kept 
for each set of duplicates. 

A. Pre-Selection –Dimensionality Reduction 

Several methods exist to detect multicollinearity among 
variables, and three were selected to examine how all the 
attributes vary with the others: the Variable Inflation Factor 
(VIF) [8], the Mutual Information (MI) [9] and the minimum 
redundancy (Wc) [10]. A known limit of multicollinearity 
measurements is the lack of meaningful threshold to 
distinguish values characterized as collinear from values 
representing the absence of multicollinearity [11]. Some 
methods, such as the VIF, use arbitrary values as threshold. 
This makes it difficult to objectively select subsets of terrain 
attributes based solely on these three measures of 
multicollinearity. However, variable ranking is often used in 
machine-learning as a pre-processing step [10] which, even 
when non optimal, is computationally efficient and statistically 
robust in preventing over fitting [12]. It was thus possible to 
rank the terrain attributes based on their level of co-association 
with the others, without defining any threshold. 

Since the levels of co-association vary as soon as one of the 
variables is removed from the datasets, stepwise measures of 
VIF, MI and Wc were computed using the statistical software R 
3.1.1. The stepwise algorithms (1) calculate the values of the 
measures for each terrain attribute, (2) rank the terrain 
attributes based on these values, (3) remove the most collinear 
or least informative attribute, (4) save it in a list, and (5) repeat 
the process until all the attributes are ranked in this list. The 
process is the same for the three measures of multicollinearity. 
An average of the three rankings was then performed for each 
terrain attribute, and the 40% top-ranked attributes were kept 
for further analysis. 

B. Selection and Grouping – Principal Component 

Analysis (PCA) 

The remaining terrain attributes measurements were 
imported in the IBM SPSS Statistics software v.22. Principal  

 

Figure 1.  Artificial surface used to derive the 230 terrain attributes 

Component Analysis (PCA) is one of the most common 
techniques used to reduce multicollinearity in a dataset [4]: a 
stepwise PCA using a Varimax orthogonal rotation was 
performed. The PCA grouped terrain attributes in independent 
groups (called components) of highly correlated attributes. An 
orthogonal rotation allows components to be uncorrelated, 
hence removing multicollinearity between the groups. Varimax 
is the most commonly used method for orthogonal rotation and 
maximizes the variance of component loadings [13].  

For each iteration of the PCA, the attributes that loaded 
equally on two or more components were identified and 
removed: when a variable was found in more than one group, it 
was considered redundant, not contributing to the model [13]. 
Iterations ended once the computation of the PCA ceases to 
isolate any further redundant attributes. The optimal number of 
components to be retained was then found in SPSS using a 
parallel analysis [14] on the remaining attributes. PCA was 
then performed using the number of components obtained from 
the tests, and the attributes that did not load on any the 
components were removed before running a final PCA. Since 
the first step of the analysis consisted in subjectively removing 
one attribute over an identical one and that we did not want to 
favour a software over another, the identical attributes were 
added back to the final solution under the assumption that if 
one of the attributes reached the final solution, an identical one 
would have too. 

III. RESULTS AND DISCUSSION 

Removal of identical terrain attributes reduced the list of 
spatial geomorphology derivatives from 230 attributes to 182. 
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The pre-selection reduced that list further to 73. The iterative 
PCA removed the redundant attributes in 7 iterations. The 73 
attributes of the initial PCA loaded on 17 components, and the 
seventh iteration left 59 attributes loading on 14 components. 
The optimal number of components given by three of the four 
tests was 13. When the PCA was re-run with 13 components, 
two of the 59 attributes did not load on any of the components 
and were thus removed. The final solution had therefore 57 
terrain attributes loading on 13 components. By adding back 
the identical attributes, the solution used for interpretation had 
67 attributes (Table I). 

The percentage of variance explained by each component 
and the cumulative percentage of the variance are indicated in 
Table II. The final solution shows a clear association between 
the type of terrain attributes and the components. The 
interpretation of the components presented in Table II is based 
on the terrain attributes that contributed the most to each 
component. The first four components and the seventh had 
only one type of terrain attributes in them. For instance, the 
first component includes only measures of easterness from 
different software and computed using different algorithms. 
Other components (5-6, 8-9, 11-13) had a combination of two 
types of terrain attributes, with one primary and one secondary 
type. For example, the fifth component had 5 measures of 
slope and one measure of local fractal dimension. Only the 
tenth component had three different types of terrain attributes. 
They were however all from the same software, which might 
indicate that the algorithms used by Whitebox GAT to measure 

TABLE I.  SOFTWARE USED, NUMBER OF TERRAIN ATTRIBUTES 

GENERATED USING EACH OF THEM, AND NUMBER AND PROPORTION OF 

ATTRIBUTES IN THE FINAL SOLUTION 

Software and Versions 

Number of 

Attributes 

Computed 

Number in 

Final 

Solution 

Proportion 

Retained  

ArcGIS 10.2.2 with Python 

2.7.8 
22 3 14% 

ArcGIS 10.2.2 with DEM 

Surface Tools (v.2.1.399) 
17 4 24% 

ArcGIS 10.2.2 with Benthic 

Terrain Modeler 3.0 rc3 
12 0 0% 

Diva-GIS 7.5.0 7 1 14% 

Idrisi Selva 17.0 7 2 29% 

Landserf 2.3 12 3 25% 

Quantum GIS 2.4.0 Chugiak 13 1 8% 

SAGA GIS 2.0.8 96 26 27% 

TNTmips Free 2014 

(MicroImages) 
25 21 84% 

uDig 1.4.0b 9 2 22% 

Whitebox GAT 3.2.1 Iguazu 10 4 40% 

TOTAL: 230 67 29% 

 

curvatures are significantly different from those of other 

software. A general interpretation of the results indicates that a 

combination of attributes of first (i.e. aspect and slope) and 

second derivatives (i.e. plan and profile curvatures), which are

TABLE II.  TOTAL OF VARIANCE EXPLAINED BY EACH COMPONENT AND INTERPRETATION 

Component 
Percentage of 

Variance 

Cumulative 

Variance 
Number of Attributes Interpretation (Primary / Secondary) 

1 15.07% 15.07% 12 Easterness 

2 12.92% 28.00% 11 Northerness 

3 8.60% 36.60% 5 Plan Curvature 

4 8.52% 45.12% 5 Profile Curvature 

5 5.88% 51.00% 6 Slope / Local Fractal Dimension 

6 5.87% 56.86% 4 Tangential / Plan Curvatures 

7 5.25% 62.12% 4 Vector Ruggedness Measure 

8 4.57% 66.69% 3 Longitudinal / Profile Curvatures 

9 4.33% 71.02% 7 Local Maximum / Slope 

10 4.17% 75.19% 3 Curvatures (from Whitebox GAT) 

11 3.43% 78.61% 3 Total Curvature / Slope Variability 

12 2.46% 81.07% 2 Plan / Profile Curvatures (from Saga GIS) 

13 2.42% 83.49% 2 Representativeness / Mean of Residuals 
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the most common terrain attributes implemented in GIS 
software, accounts for 51% of the variance of the surface alone 
(Table II). The addition of other measures of curvature, 
rugosity and statistical attributes increases the variance 
explained.  

Since all the terrain attributes within each component load 
almost equally high, they are considered equivalent in 
importance: PCA regroups highly correlated attributes that also 
interact with attributes from other components in the same 
way, therefore making each attribute very similar to all the 
others within the same component. An optimal combination of 
terrain attributes would thus consist of one terrain attribute 
from each component. This indicates that an optimal 
combination of terrain attributes would have between 5 and 13 
attributes. 

The algorithm used to derive some of the terrain attributes 
does not seem to matter much for that particular surface: some 
algorithms loaded higher than others on each component, but 
not in a significant manner. TNTmips was the software that 
had the highest percentage of its surface attributes kept in the 
analysis (Table I). In addition, at least one attribute from 
TNTmips is included in each of the five first components, 
indicating that 51% of the variance can be explained using this 
software alone (Table II). 

The method proved to be efficient in reducing the number 
of terrain attributes to measure and to provide combinations of 
terrain attributes to capture the most variance on the surface. 
More tests will however be necessary to refine the method and 
test it on natural surfaces, at different scales, and on surfaces of 
different complexity levels.  

IV. CONCLUSION  

This contribution presented a new method to reduce a high-
dimensional list of terrain attributes in order to select optimal 
combinations of terrain attributes to be used by non-expert GIS 
users. The method reduces multicollinearity and maximizes the 
variance of the surface that is explained. The proposed method 
proved to be efficient for the surface on which it was tested and 
reduced a list of 230 terrain attributes to a list of 67. From 
these 67 attributes, only 5 were needed to explain 51% of the 
variance and 13 to explain 83% of it. PCA allowed a 
meaningful statistical grouping of terrain attributes presenting 
similar characteristics. Using the results from the final PCA, 
one can use only one attribute per component and be sure that 
multicollinearity is removed and that a significant amount of 
variance is explained. Since principal components will reflect 
the surface used, future analyses will be conducted using a 
range of natural and artificial surfaces. 
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