
Geomorphometry.org/2018 Peckham

Using the Open-source TopoFlow Python Package
for Extracting D8-based Grids from DEMs and

for Fluvial Landscape Evolution Modeling

Scott D. Peckham
University of Colorado
Boulder, Colorado USA

Scott.Peckham@colorado.edu

Abstract—The TopoFlow 3.5 Python package consists of over
72,000 lines of code and provides a full-featured, spatial
hydrologic model with several alternate and easily swappable
process components for each hydrologic process (e.g. infiltra-
tion, evaporation, snowmelt). In support of its D8-based flow
routing and the included landscape evolution model, Erode,
this Python package also contains a rich collection of lesser-
known tools for working with and extracting other gridded
products from DEMs. This paper briefly describes some of
these DEM-related tools and demonstrates how to use them.

I. INTRODUCTION

TopoFlow has been under development since 2000, with
the original version (Peckham, 2009a) written in Interactive
Data Language (IDL). Over the years, TopoFlow has been
completely rewritten in Python using the NumPy (Numer-
ical Python) package, and has helped to drive advances
in model coupling technologies, such as BMI, the Ba-
sic Model Interface (Peckham et al., 2013), the CSDMS
Standard Names (Peckham, 2014b) (which evolved into
the Geoscience Standard Names, geostandardnames.org)
and a model-coupling framework called EMELI (Peckham,
2014a; Jiang et al., 2017).

TopoFlow 3.5 (Peckham, 2017a,b; Peckham et al, 2017)
is an open-source, Python/NumPy package for spatial hy-
drologic modeling that contains: (1) many plug-and-play
components for modeling hydrologic processes (e.g. infil-
tration, evaporation, channel flow, snowmelt, etc.), (2) a
fluvial landscape evolution model based on D8 flow routing
called Erode, (3) a large collection of low-level utilities (e.g.

Fig. 1. Part of a total contributing area grid, Beaver Creek, Kentucky.

for reading and writing files) (4) example data sets and (5)
a self-contained, plug-and-play model coupling framework
called EMELI. Each model component has a Basic Model
Interface (BMI) that uses the CSDMS Standard Names.
In support of TopoFlow’s D8-based flow routing and the
landscape evolution model, Erode, this package contains a
collection of lesser-known tools for working with DEMs,
such as: (1) extracting D8-based grids from a DEM, (2)
“profile smoothing” a DEM prior to using the kinematic
wave flow routing method and (3) reading data from
different file formats (e.g. RiverTools, NetCDF, BOV). This
paper briefly describes some of the foundational, DEM-

O-11-1

Geomorphometry.org/2018 Peckham

related tools in TopoFlow and demonstrates how to use
them.

II. WORKING WITH BINARY GRID FILES

In the TopoFlow 3.5 Python package, it is generally as-
sumed that DEMs and other spatial grids are stored as
IEEE binary, floating-point (4-byte or 8-byte) values, in
row-major order (first line is north edge) and with geo-
referencing information stored in a separate text file called
a header file. This same, basic and very efficient file
format is used with many different filename extensions,
such as RTG (RiverTools Grid), FLT (Arc GridFloat), IMG
(ENVI Grid), BOV (Brick of Values) and others. How-
ever, each of these (identical) formats uses a differently-
formatted header file. By default, the TF 3.5 package
assumes that the header file is stored as a RiverTools
Information (RTI) file. RiverTools 4.1 is a point-and-click
commercial package for terrain and hydrologic analysis also
developed by the author — see Peckham (2009b); Rivix
(2014). The TF package therefore includes utilities with a
convenient API for working with RTG, RTI and even RTS
(RiverTools Sequence) files (i.e. a grid stack or sequence
of binary grids in one file). Modules called rtg files.py,
rti files.py and rts files.py are located in the package folder
topoflow/utils. The package also has APIs for working with
several other file formats, including: BOV, multi-column
text (e.g. time series), CFG (configuration) and NetCDF.
The NetCDF utilities are in four separate files for working
with time series, profile series, grid series and “cube se-
ries” data types. Modules called bov files.py, cfg files.py,
ncts files.py, ncps files.py, ncgs files.py, nccs files.py and
text ts files.py (multi-column text) are also located in the
package folder topoflow/utils. Examples of using the RTG
and RTI file utilities are given in subsequent sections.

III. FILLING DEPRESSIONS IN A DEM

Wang and Liu (2006) introduced an efficient algorithm for
filling depressions in a DEM that is based on the computer
science concept of a priority queue. The TopoFlow 3.5
Python package contains an implementation of this algo-
rithm that can use either (1) the built-in Python package
heapq or (2) an alternate, pure Python implementation

of the binary, heap-based priority queue. The depression-
filling implementation and alternate priority queue modules
are called: fill pits.py and heap base.py and are in the
package folder topoflow/utils. The following lines of code
illustrate how this tool can be used directly. However,
it is also called from the d8 base.py module (in the
topoflow/components folder), when the FILL PITS IN Z0
flag is set in the component’s configuration file.
from topoflow.utils import fill_pits
from topoflow.utils import rtg_files
from topoflow.utils import rti_files
in_dir = ’Users/peckham/TF_Tests/Basin1_runs/’
in_prefix = in_dir + ’Basin1’
DEM_file = in_prefix + ’_rawdem.rtg’
header_file = in_prefix + ’.rti’
grid_info = rti_files.read_info(header_file,

REPORT=True)
DEM = rtg_files.read_grid(DEM_file, grid_info,

SILENT=False)
fill_pits.fill_pits(DEM, ’FLOAT’,

grid_info.ncols, grid_info.nrows, SILENT=False)
Save new DEM to a file
new_DEM_file = in_prefix + ’_dem.rtg’
rtg_files.write_grid(DEM, new_DEM_file,

grid_info)

IV. EXTRACTING D8-BASED GRIDS FROM A DEM
The TopoFlow 3.5 Python package contains a powerful D8
toolkit which is able to compute many different types of
grids associated with the D8 flow routing method (Gruber
and Peckham, 2009; Jenson, 1985). This includes grids
of D8 flow direction codes, total and specific contributing
area, local topographic slope and others. The corresponding
modules in the topoflow/components folder are: d8 base.py,
d8 global.py and d8 local.py. The last two of these inherit
for the first one, and the last one is only for use with Erode
D8 Local, described later. Like all other TopoFlow compo-
nents, these can be configured by editing a configuration
file (e.g. with filename ending in d8 global.cfg.)

The following commands show how to use TopoFlow?s
D8 toolkit to compute (1) a D8 flow direction grid (with
Jenson (1985) flow codes), (2) a D8 topographic slope
grid, and (3) a D8 total contributing area grid. All of
these grids have the same dimensions as the source DEM
they are derived from. TopoFlow uses two types of file-
name prefix to help organize files — a site prefix is

O-11-2

Geomorphometry.org/2018 Peckham

used for files that describe the study site and therefore
don’t change between model runs (e.g. the DEM), while
a case prefix is used for files that result from running the
model for a particular scenario or case (e.g. response to a
given storm or component set). Before running this code,
you must create a directory in your home directory, e.g.
“/Users/peckham/TF Tests/Basin1 runs” and copy a DEM
as a binary grid along with an RTI header file into the new
directory as well as a CFG file for the D8 Global component
with extension “ d8 global.cfg”. Then cd to this directory
and use it for both in directory and out directory in the
following. Allowing these two directories to be different
provides maximum flexibility, e.g. several users can share
data in the same input directory but save results in their own
output directory, and different components can use different
output directories.

import topoflow
from topoflow.components import d8_global
d8 = d8_global.d8_component()
d8.DEBUG = False
in_dir = ’/Users/peckham/TF_Tests/Basin1_runs/’
site_prefix = ’Basin1’
filename = site_prefix + ’_d8_global.cfg’
Construct full path to configuration file
cfg_file = in_dir + filename
time = 0.0
d8.initialize(cfg_file=cfg_file,

SILENT=False, REPORT=True)
d8.update(time, SILENT=False, REPORT=True)

Once the above set of D8-based grids have been com-
puted for a given DEM, they can be saved into binary
grid files (IEEE binary, row-major, 4-byte floats) with the
following commands.

from topoflow.utils import rtg_files
from topoflow.utils import rti_files
out_dir = ’/Users/peckham/TF_Tests/Basin1_runs/’
out_prefix = out_dir + site_prefix
header_file = (out_prefix + ’.rti’)
grid_info = rti_files.read_info(header_file,

REPORT=True)

Save D8 flow code grid
d8_code_file = (out_prefix + ’_flow.rtg’)
rtg_files.write_grid(d8.d8_grid, d8_code_file,

grid_info, RTG_type=’BYTE’)

Save D8 contributing area grid

d8_area_file = (out_prefix + ’_d8-area.rtg’)
rtg_files.write_grid(d8.A, d8_area_file,

grid_info, RTG_type=’FLOAT’)

Compute the D8 slope grid
pIDs = d8.parent_IDs
d8_slope = (d8.DEM - d8.DEM[pIDs]) / d8.ds

Save the D8 slope grid
d8_slope_file = (out_prefix + ’_d8-slope.rtg’)
rtg_files.write_grid(d8_slope, d8_slope_file,

grid_info, RTG_type=’FLOAT’)

Every DEM grid cell has one D8 parent cell that it flows
towards, but a D8 parent can have multiple D8 kids. Each
cell has an ID, sometimes a long integer (calendar-style
numbering) and sometimes a (row, col) tuple. The Erode
D8 Global component for landscape evolution modeling
(discussed later) generates a sequence of DEMs indexed by
time. After each time step, it calls the D8 Global component
on the modified DEM to rapidly update the D8 grids. The
Erode D8 Global source code therefore also illustrates how
to call the D8 Global component.

V. DEM PROFILE SMOOTHER TOOL

This is a pre-processing tool that can be applied to a DEM
to create a new DEM with smoother and more realistic
channel slopes. Well-defined and smoothly-varying slopes
along channel streamlines is important when using the kine-
matic wave method of flow routing. TopoFlow’s kinematic
wave flow routing component, channels kinematic wave.py
is in the topoflow/components folder. The algorithm, based
on Flint’s Law, first computes a new D8 slope grid (topo-
graphic slopes) from a D8 area grid and then computes a
new DEM from the D8 slope grid. For more details, see
Peckham (2009c). This module, called smooth DEM.py, is
in the topoflow/components folder.

VI. FLUVIAL LANDSCAPE EVOLUTION MODELING

Erode is a fluvial landscape evolution model (LEM) that
is included as a component in the TopoFlow 3.5 Python
package. For background on fluvial landscape evolution
modeling, see Peckham (2003). It has a BMI interface and
can be run by itself or using EMELI. Unlike most (or
perhaps all) other LEMs, Erode does not fill pits in the

O-11-3

Geomorphometry.org/2018 Peckham

initial DEM artificially at the start. Instead, local depres-
sions are filled naturally by the sediment transport process
itself over time. Movies of the D8 area grid evolving
over time show what looks like channel avulsions (i.e.
entire channels sometimes “jumping” to a new pathway)
during this filling process. In addition, Erode includes a
robust numerical stability condition and uses adaptive time
stepping for optimum performance. Erode is not typically
coupled to the hydrologic model components in TopoFlow,
but could easily be modified to provide a sediment or con-
taminant transport model component that could be coupled
to the channel flow components. Within the TopoFlow 3.5
package, the main version of Erode (Erode D8 Global)
is the module in the topoflow/components folder called
erode d8 global.py, which inherits from the base class
module erode base.py. Another, experimental and less ro-
bust version of Erode (Erode D8 Local) is also included
that uses local time stepping. That is, it uses a discrete
event simulation (DES) algorithm for solving stiff partial
differential equations, in which every grid cell can have
a different (local) time step, as opposed to all grid cells
using the same time step (global). This module, called
erode d8 local.py, also inherits from erode base.py and
uses the d8 local.py module.

VII. SUMMARY

The TopoFlow 3.5 Python package has a rich, object-
oriented collection of open-source utilities and components,
some of which perform common DEM processing and
extraction tasks. Package installation instructions are given
in an appendix to Peckham et al (2017). Several lesser-
known capabilities of the package were highlighted, with
example code snippets.

REFERENCES

Gruber, S., and S. Peckham (2009) Land surface parameters and objects
in hydrology, In: Geomorphometry: Concepts, Software, Applications,
edited by T. Hengl and H. I. Reuter, pp. 171–194, Elsevier, Amster-
dam, http://dx.doi.org/10.1016/S0166-2481(08)00007-X.

Jenson, S. K. (1985) Automated derivation of hydrologic basin character-
istics from digital elevation model data, In: Proceedings of the Digital
Representations of Spatial Knowledge, pp. 301–310, Auto-Carto
VII, Washington, D.C., http://mapcontext.com/autocarto/proceedings/
auto-carto-7/.

Jiang, P., M. Elag, P. Kumar, S.D. Peckham, L. Marini, R. Liu (2017) A
service-oriented architecture for coupling web service models using
the Basic Model Interface (BMI), Environmental Modelling & Soft-
ware, 92, 107-118, http://dx.doi.org/10.1016/j.envsoft.2017.01.021.

Peckham, S.D. (2003) Fluvial landscape models and catchment-scale
sediment transport, Global and Planetary Change (special issue),
39(1), 31–51, http://dx.doi.org/10.1016/S0921-8181(03)00014-6.

Peckham, S.D. (2009a) Geomorphometry and spatial hydrologic model-
ing, In: Hengl, T. and Reuter, H.I. (Eds), Geomorphometry: Concepts,
Software and Applications, Chapter 25, vol. 33, Elsevier, 579–602,
http://dx.doi.org/10.1016/S0166-2481(08)00025-1.

Peckham , S.D. (2009b) Geomorphometry in RiverTools, In: Hengl, T.
and Reuter, H.I. (Eds), Geomorphometry: Concepts, Software and
Applications, Chapter 18, vol. 33, Elsevier, 411–430, http://dx.doi.
org/10.1016/S0166-2481(08)00018-4.

Peckham, S.D. (2009c) A new algorithm for creating DEMs with
smooth elevation profiles, Proc. of Geomorphometry 2009, Zurich,
Switzerland, 31 Aug. to 2 Sept., 34-37. http://geomorphometry.org/
Peckham2009.

Peckham, S.D., E.W.H. Hutton and B. Norris (2013) A component-
based approach to integrated modeling in the geosciences: The Design
of CSDMS, Computers & Geosciences, special issue: Modeling for
Environmental Change, 53, 3–12, http://dx.doi.org/10.1016/j.cageo.
2012.04.002.

Peckham, S.D. (2014a) EMELI 1.0: An experimental smart modeling
framework for automatic coupling of self-describing models, Proceed-
ings of HIC 2014, 11th International Conf. on Hydroinformatics, New
York, NY. CUNY Academic Works, http://academicworks.cuny.edu/
cc conf hic/464/.

Peckham, S.D. (2014b) The CSDMS Standard Names: Cross-domain
naming conventions for describing process models, data sets and
their associated variables, Proceedings of the 7th Intl. Congress on
Env. Modelling and Software, International Environmental Modelling
and Software Society (iEMSs), San Diego, CA. (Eds. D.P. Ames,
N.W.T. Quinn, A.E. Rizzoli), Paper 12, http://scholarsarchive.byu.edu/
iemssconference/2014/Stream-A/12/.

Peckham, S.D., M. Stoica, E.E. Jafarov, A. Endalamaw and W.R. Bolton
(2017) Reproducible, component-based modeling with TopoFlow, a
spatial hydrologic modeling toolkit, Earth and Space Science,4(6),
377–394, special isssue: Geoscience Papers of the Future, American
Geophysical Union, http://dx.doi.org/10.1002/2016EA000237.

Peckham, S.D. (2017a) TopoFlow 3.5 Python Package, peck-
hams/topoflow, http://doi.org/10.5281/zenodo.322649, A spatial hy-
drologic model written in Python, with 16 process model components,
numerous utilities, sample data, etc. All components have a BMI in-
terface. Includes the EMELI 1.0, plug-and-play modeling framework.

Peckham, S.D. (2017b) TopoFlow Python Package on GitHub, open-
source, https://github.com/peckhams/topoflow.

Rivix, LLC (2014) RiverTools 4.0 User’s Guide, 250 pp.
Wang, L. and H. Liu (2006) An efficient method for identifying and

filling surface depressions in digital elevation models for hydrologic
analysis and modeling, International Journal of Geographic Infor-
mation Science, 20(2), 193–213, Taylor & Francis, http://doi.org/10.
1080/13658810500433453.

O-11-4

http://dx.doi.org/10.1016/S0166-2481(08)00007-X
http://mapcontext.com/ autocarto/proceedings/auto-carto-7/
http://mapcontext.com/ autocarto/proceedings/auto-carto-7/
http://dx.doi.org/10.1016/j.envsoft.2017.01.021
http://dx.doi.org/10.1016/S0921-8181(03)00014-6
http://dx.doi.org/10.1016/S0166-2481(08)00025-1
http://dx.doi.org/10.1016/S0166-2481(08)00018-4
http://dx.doi.org/10.1016/S0166-2481(08)00018-4
http://geomorphometry.org/Peckham2009
http://geomorphometry.org/Peckham2009
http://dx.doi.org/10.1016/j.cageo.2012.04.002
http://dx.doi.org/10.1016/j.cageo.2012.04.002
http://academicworks.cuny.edu/cc_conf_hic/464/
http://academicworks.cuny.edu/cc_conf_hic/464/
http://scholarsarchive.byu.edu/iemssconference/2014/Stream-A/12/
http://scholarsarchive.byu.edu/iemssconference/2014/Stream-A/12/
http://dx.doi.org/10.1002/2016EA000237
http://doi.org/10.5281/zenodo.322649
https://github.com/peckhams/topoflow
http://doi.org/10.1080/13658810500433453
http://doi.org/10.1080/13658810500433453

	Introduction
	Working with Binary Grid Files
	Filling Depressions in a DEM
	Extracting D8-based Grids from a DEM
	DEM Profile Smoother Tool
	Fluvial Landscape Evolution Modeling
	Summary

