

Towards a consistent set of land-surface variables for landslide modelling

Dornik Andrei¹, Drăguţ Lucian¹, Cheţan Marinela Adriana¹, Takashi Oguchi², Yuichi Hayakawa³, Mihai Micu⁴

¹ Department of Geography, West University of Timisoara, Bd. V. Parvan 4, 300223, Timisoara, Romania
² Center for Spatial Information Science, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8568, Japan
³ Hokkaido University, N10W5 Kita-ku, Sapporo, Hokkaido 060-0810, Japan
⁴ Institute of Coography, Bemanian Academy, 022002, Busharost, Bemania

⁴ Institute of Geography, Romanian Academy, 023993, Bucharest, Romania

Email: andrei.dornik@e-uvt.ro

INTRODUCTION

- land-surface variables (LSVs) are easy to obtain from Digital Elevation Models (DEMs)
- a consistent approach in selecting the ones that are the most relevant to landslides is still missing
- Objective: This work reports preliminary results of an experiment that aims at finding a set of LSVs capable to help in identifying landslide scarps in various landscape conditions

Study areas

• **six study areas**, of different environmental conditions

• 3 study areas are located in Romania - B1, B2, B3

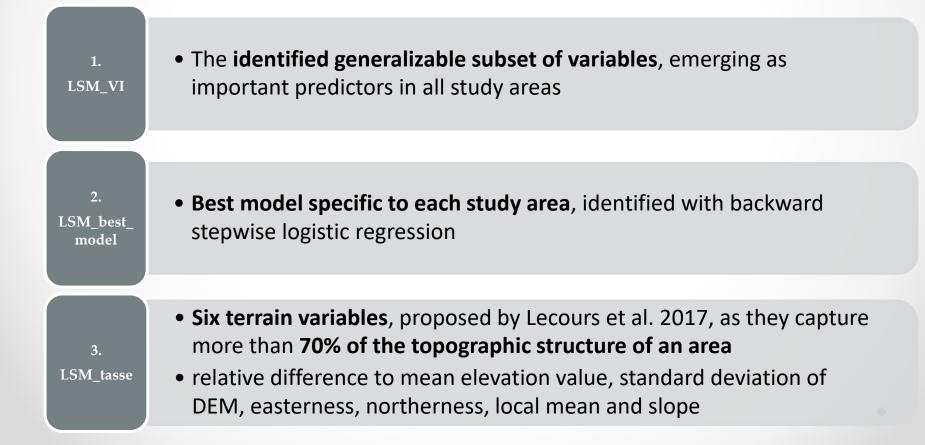
• 2 study areas are located in Honshu Island, Japan - J1, J2

• 1 study area is located in Utah, USA - U

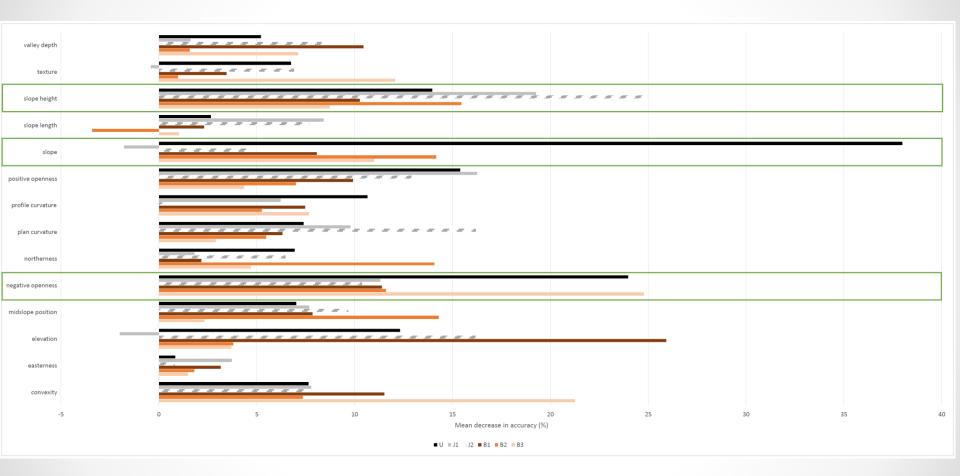
Data

- databases of landslide scarps compiled from different sources archive data, geomorphological field mapping, local authority databases, stereographic photo interpretation, LiDAR
- Presence data: one point was randomly selected within each scarp
- Absence data: the same number of points was randomly selected outside scarp polygons
- 70% used for training and 30% for validation
- Shuttle Radar Topography Mission (SRTM) DEM at 30 m (1 arc second)

Land-surface variables

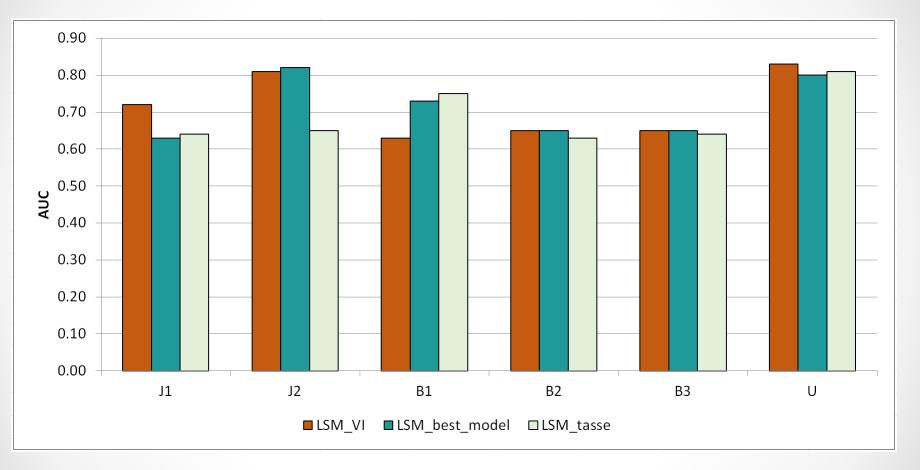

14 LSVs were retained after multicollinearity analysis (from initial of 24 LSVs)

Variable importance analysis


- aim: generalizable subset of terrain variables for landslide modelling
- variable importance (VI) analysis using Random Forest (RF) package in R
- mean decrease in accuracy (MDA) algorithm

Landslide modelling

- logistic regression was used for landslide modelling
- three models tested



RESULTS

Variable importance expressed as mean decrease in accuracy in the six study areas

RESULTS

Models prediction performance

CONCLUSIONS

three LSVs with the potential of describing satisfactorily landslide

scarps in various landscape conditions

- **negative topographic openness** = scarps shape
- **slope height** = position on the slope
- **slope** = landslide favorability factor
- models based on these three LSVs produced results comparable or even better (in some cases) than:
 - models built on locally calibrated LSVs
 - models built on a larger number of LSVs

Thank you!