Morphometric and Longitudinal Profile Analysis of Lateritic Gully Catchments using high resolution data and SfM PRIYANK PRAVIN PATEL¹, SAYONI MONDAL¹ & RAJARSHI DASGUPTA² ¹ DEPT. OF GEOGRAPHY, PRESIDENCY UNIVERSITY, KOLKATA, W.B., INDIA

^{,2} DEPT. OF GEOGRAPHY, EAST CALCUTTA GIRLS' COLLEGE, KOLKATA, W.B., INDIA

Where are we looking for an example...

52'0"N

30"N

'Ganganir Danga' (*Land of Fire* due to ochre hues) at 22°51'-22°52'N, 87°20'-87°21'E), SW Bengal, c. 3 sq.km.

Avg. Temp. 35°C, Annual pptn: 1500mm -Humid badland (Gallart et al., 2013).

Cut into the lateritic Sijua Formation with two distinct surfaces (~15m diff.)

Intense rilling & gullying causing sediment loss.

Inducted as a Geomophosite in Kale (ed.) 2017, *Geomorphosites in India*, making apparent its intrinsic, geologic, landscape and aesthetic value.

High resolution multispectral image (Worldview-2 4B multispectral bundle; spatial resolution: 1.84 metres; image date: 5 January 2011)

Very high resolution panchromatic image (Worldview-3 PAN; spatial resolution: 0.31 meters; image date: 12 November 2014)

Typical Badland Features in Lateritic Terrain at Gangani

87°20'30"E 87°20'45"E 87°21'0"E **TABLE 1** Select morphometric parameters of the studied gully basins

Gully basin	Area (m²)	Perimeter (m)	Basin relief (m)	Mean slope (°)	Drainage density (m/10,000 m ²)	Dissection index	Ruggedness number	Hypsometric integral
O01	46,731.669	1,582.354	15.48	8.57	293.655	0.285	0.455	0.422
O02	360,981.247	4,066.033	23.39	7.07	267.416	0.374	0.625	0.571
O03	97,693.815	2,566.339	22.87	7.73	283.007	0.367	0.647	0.556
O04	49,330.034	1,231.382	16.80	9.77	264.559	0.313	0.444	0.628
O05	20,803.732	961.614	13.72	7.22	244.963	0.268	0.336	0.633
N01	24,476.632	1,031.081	25.27	12.18	281.415	0.420	0.711	0.677
N02	3,184.300	274.161	18.68	16.98	184.979	0.320	0.346	0.633
N03	24,385.686	1,166.690	26.80	11.25	303.785	0.437	0.814	0.645

a/A

Gully channels exhibit a visually close relation to concave- up profiles (or straight- line plots) for parts of courses.

Marked variations seen in few parts/ entire gully (001, 003, N01, N03).

Changes brought about by variations in the local substrate and the differential hardness and thereby resistance to erosion of the ambient rock layers over which these gullies have incised (i.e. local differences in the resistance of the individual laterite, sandstone and compacted clay layers).

Fluctuations of the profiles about the expected straight (graded) path are seen to occur more markedly for the NBT basins than for the OBT basins.

Gully channel	Mean SL index	Average rate of change of SL index	Ideal SL index	Average NSL
O01	5.730	-44.28	1.90	3.016
O02	10.694	-61.51	7.12	1.502
O03	12.239	-122.32	2.86	4.279
O04	7.550	-178.53	1.86	4.059
O05	6.605	-103.49	1.44	4.587
N01	10.755	-64.20	3.10	3.469
N02	4.411	-69.48	1.04	4.241
N03	12.311	-90.88	3.24	3.800

Stream segment gradient indices for gully long profiles

Alignment of Monoclinic Surface with superimposed main and tributary long profiles in each gully basin

Hack, J. T. (1973). Stream-profile analysis and stream gradient index. Journal of Research of the US Geological Survey, 1, 421–429.

Li, J., Xiong, L., & Tang, G. (2019). Combined gully profiles for expressing surface morphology and evolution of gully landforms. Frontiers of Earth Science, 13, 551–562.

TABLE 3 Morphometric attributes of the studied gully channels

Gully channel	Elevation at gully source (m)	Elevation at gully mouth (m)	Fall (m)	Gully length (m)	Langbein (1964) concavity index (0)	Gully evolution index (Li et al., 2019)
O01	53.21	38.00	15.21	744.55	0.460	0.612
O02	61.43	39.11	22.32	1,498.12	0.224	0.516
O03	61.55	39.48	22.07	1,215.87	0.453	0.444
O04	52.97	37.05	15.92	590.37	0.126	0.524
O05	49.99	37.10	12.89	379.72	0.155	0.490
N01	58.90	35.12	23.78	399.83	0.463	0.546
N02	48.40	39.66	8.74	58.32	0.023	0.505
N03	60.20	35.21	24.99	459.72	0.320	0.506

TABLE 4 Curve fitting on normalized gully profiles

	R ² values fo				
Gully channel	Linear	Exponential	Logarithmic	Power	Best-fit curve
001	.879	.898	.410	.402	Exponential
O02	.970	.981	.805	.782	Exponential
O03	.950	.946	.329	.315	Linear
004	.972	.981	.378	.365	Exponential
O05	.959	.954	.344	.331	Linear
N01	.916	.934	.358	.348	Exponential
N02	.966	.969	.340	.333	Exponential
N03	.908	.920	.306	.299	Exponential

Langbein, W. B. (1964). Profiles of rivers of uniform discharge (Professional Paper 501B). Washington, DC: U.S. Geological Survey.

Lee, C.-S., & Tsai, L.-L. (2010). Quantitative analysis for geomorphic indices of longitudinal river profile: A case study of the Choushui River, central Taiwan. Environmental Earth Sciences, 59, 1549–1558. TABLE 5 Derived correlation coefficients between the various derived gully basin and channel morphometric parameters

	x ₁	x ₂	x ₃	x ₄	x ₅	x ₆	x ₇	x ₈	x ₉	x ₁₀	x ₁₁	x ₁₂	x ₁₃	x ₁₄	x ₁₅	x ₁₆	x ₁₇	x ₁₈	x ₁₉	x ₂₀	x ₂₁	x ₂₂
<i>x</i> ₁	1.00																					
x ₂	.94	1.00																				
x ₃	.35	.28	1.00																			
x ₄	.34	.32	02	1.00																		
x ₅	.27	.30	.50	50	1.00																	
x _ó	50	67	.21	11	.16	1.00																
x ₇	.76	.84	.46	.38	.02	70	1.00															
x ₈	.97	.89	.47	.36	.18	49	.84	1.00														
Х ₉	.14	.37	.28	45	.40	58	.51	.17	1.00													
x ₁₀	.17	.21	.48	62	.99	.19	05	.10	.44	1.00												
X ₁₁	.23	.36	.47	59	.93	10	.18	.18	.71	.94	1.00											
x ₁₂	23	37	30	65	.35	.42	72	35	30	.42	.18	1.00										
x ₁₃	.54	.69	.38	31	.83	39	.46	.45	.70	.79	.91	01	1.00									
x ₁₄	.41	.39	10	.94	30	04	.27	.36	51	44	46	46	16	1.00								
x ₁₅	.36	.51	.38	57	.84	34	.34	.30	.79	.85	.96	.13	.95	45	1.00							
Х ₁₆	.85	.98	.19	.34	.25	73	.84	.80	.45	.16	.35	46	.70	.40	.51	1.00						
x ₁₇	.01	.27	.39	25	.40	36	.43	.03	.80	.40	.62	41	.63	29	.66	.37	1.00					
x ₁₈	.35	.51	.16	50	.84	34	.21	.23	.67	.83	.92	.23	.95	32	.96	.52	.55	1.00				
X ₁₉	.18	.11	.77	.20	.19	.18	.31	.30	01	.14	.12	33	.07	.07	.04	.01	.30	11	1.00			
x ₂₀	.92	.88	.51	.00	.57	42	.68	.89	.35	.51	.56	05	.75	.09	.65	.78	.19	.61	.27	1.00		
x ₂₁	.82	.96	.07	.35	.25	72	.75	.74	.39	.15	.32	39	.69	.45	.48	.99	.32	.54	08	69	1.00	
X ₂₂	09	14	.61	003	25	.06	.38	.14	.23	19	12	48	23	27	12	15	.26	41	.48	06	30	1.00

Note: x_{11} gully basin area; x_{22} , gully basin perimeter; x_{33} , maximum basin elevation; x_{42} , minimum basin elevation; x_{53} , basin relief; x_{53} , mean basin slope; x_{72} basin longest dimension; x_{83} , total stream length; x_{92} , drainage density; x_{102} , dissection index; x_{11} , ruggedness index; x_{122} , hypsometric integral; x_{133} , gully source elevation; x_{142} , gully mouth elevation; x_{123} , gully channel fall; x_{132} , gully channel length; x_{127} , Langbein's profile concavity index for the gully channel; x_{128} , mean SL index; x_{129} , average SL index change rate; x_{202} , ideal SL index; x_{211} , mean NSL; and x_{222} , gully evolution index.

The HI and GEI parameters are negatively correlated and this is quite obvious.

A more denuded basin (i.e., having lower HI) will have gullies incising down relatively quicker along their course from the upper reaches towards the larger spatial coverage/ extents of the basin floor, and this greater profile concavity shall elicit a higher GEI value. •All gully basin and channel parameters were extracted and used them in a hierarchical cluster analysis.

•Dendrogram shows grouping of likely similar basins among those examined.

•Apparent that the Basin OO2 is an anomaly and stands out from the rest.

•This occurs not only due to its excessively large size and much greater gully channel length, but also possibly because of its much older age and relatively more advanced geomorphic stage (evidenced by the profile concavities and basin hypsometry values).

Dendrogram using Average Linkage (Between Groups)

Rescaled Distance Cluster Combine

Dendrogram-based clustering of studied gully basins and channels

Q values generally increase downstream along the rill from the friable upper surface towards the hardpan caprock over which the rill then plunges

A Rill head on the upper surface

The "Q"-value [=rebound V divided by inbound V] represents the physical rebound coefficient. Comparable Q values for other materials obtained during calibration are as follows: Sandstone block – 32.00 Haematite block – 58.57 Marble block – 72.32

Variations in hardness of the ambient layers control the long profile form and development, with steeper scarp slopes in middle sections represent the plunge over the latertic hardpan caprock.

The upper course lies across low gradient but durable caprock or gravelly lateritic *moram* surface while the lowermost portion creates puny cascades through erodible compact clay layers.

Uneven hardness in compacted sediment/rock layers creates -

1)

2)

3)

Rock fall

Basal sapping

Uneven long profiles

Soil pipes

Earth pillars

The 3-D model was prepared via the Structure-from-Motion technique using multiple photographs. A number of minor geomorphic features can be distinguished, which have formed along the channel wall of on of the main gullies in Gangani. Piping is evident, along with the development of a hollow to the left of the figure. Weathered and broken down blocks that have detached from the main gully wall are seen towards the right. The alternate fine depositional layers are distinguishable by their differential colours and nodules of weather ferricrete are visible on some of the minor slope segments

Sfm-based models of gully features

Piping along gully wall

Earth pillars and caving on gully headwall

Rill cut into duricrust – changes in longittudinal profile before and after earth-filling

Toe-slope erosion along gully channel

What may be finally inferred...

Significant gully erosion has occurred at Gangani (Garhbeta), with this being more significant in its western portion (NBT).

The longitudinal forms of the gullies reflect the lateritic hardpan/durictust nature of the landscape, and the high scarp that has formed locally. These are reflected in the higher SL values in their middle portion.

There is a notable variation in the substrate, with multiple layers present – lateritic duricrust is the upper surface, then alternating compacted clay layers and finally sandstone.

Rilling, piping and formation of earth pillars has occurred due to the lateritic scarp presence. Each of these have then own typical morphometry.

Overhangs and caving has occurred at the scarp base which cannot always be captured by satellite imaged DEMs. SfM provides a feasible way of documenting these and tracking there evolution from repeat surveys. Using Ground-Based Photogrammetry for Fine-Scale Gully Morphology Studies: Some Examples

Some related publications

Priyank Pravin Patel, Rajarshi Dasgupta, and Sayoni Mondal

© Springer Nature Switzerland AG 2020 P. K. Shit et al. (eds.), *Gully Erosion Studies from India and Surrounding Regions*, Advances in Science, Technology & Innovation, https://doi.org/10.1007/978-3-030-23243-6_12

 The local sector sector and the local sector sector sector sector 			
	DOI: 10.1111/tgis.12828		
	RESEARCH ARTICLE	Transactions (in GIS	WILEY
	An investigation into longitudina within the "Grand Canyon" of Be India	l forms of guengal, Easter	ullies n
	Priyank Pravin Patel ¹ Priyank Pravin Patel ¹ Rajarshi Dasgupta ²	Sreeparna Char	nda ²

With gratitude...

This study has been funded by a University Grants Commission Start-Up Grant under its Faculty Research Promotion Scheme for early career researchers (Letter No. F.30-78/2014(BSR) dated 22nd January 2015) and the high resolution satellite images were obtained courtesy of the DigitalGlobe Foundation via an Imagery Grant (issued on 3rd August 2015), both to Priyank Pravin Patel.

Thank you for your kind patience.

Contact details:

priyank999@hotmail.com priyank.geog@presiuniv.ac.in

Priyank Pravin Patel

Assistant Professor, Dept. of Geography, Presidency University, Kolkata, India