MultiscaleDTM: An open-source R package for multiscale geomorphometric analysis

Published: May 3, 2023 by C.H. Grohmann

There is a new paper (open access) describing an R package for multiscale geomorphometric analysis:

Ilich, A.R., Misiuk, B., Lecours, V., Murawski, S.A. 2023. MultiscaleDTM: An open-source R package for multiscale geomorphometric analysis. Transactions in GIS, 27, 1164–1204. https://doi.org/10.1111/tgis.13067

Paper abstract:
Digital terrain models (DTMs) are datasets containing altitude values above or below a reference level, such as a reference ellipsoid or a tidal datum over geographic space, often in the form of a regularly gridded raster. They can be used to calculate terrain attributes that describe the shape and characteristics of topographic surfaces. Calculating these terrain attributes often requires multiple software packages that can be expensive and specialized. We have created a free, open-source R package, MultiscaleDTM, that allows for the calculation of members from each of the five major thematic groups of terrain attributes: slope, aspect, curvature, relative position, and roughness, from a regularly gridded DTM. Furthermore, these attributes can be calculated at multiple spatial scales of analysis, a key feature that is missing from many other packages. Here, we demonstrate the functionality of the package and provide a simulation exploring the relationship between slope and roughness. When roughness measures do not account for slope, these attributes exhibit a strong positive correlation. To minimize this correlation, we propose a new roughness measure called adjusted standard deviation. In most scenarios tested, this measure produced the lowest rank correlation with slope out of all the roughness measures tested. Lastly, the simulation shows that some existing roughness measures from the literature that are supposed to be independent of slope can actually exhibit a strong inverse relationship with the slope in some cases.

story publication toolbox r cran package

Share

Latest Posts

Cover Design Contest for the Upcoming Book on Geomorphometry

Dear geomorphometry community,

We are pleased to invite submissions for a cover design contest for the second edition of the Geomorphometry book, to be published in 2026.

The submissions will be gathered in a poll, and the entire community will be able to vote for their favorite design.

If your design is selected, you will receive the appropriate credits, but would need to provide the necessary permissions to use the image.

You can submit your design by email before October 17th. Please ensure that the image is of at least 300 dpi resolution.

Get designing!

The editors,
Hannes Reuter
Carlos Grohmann
Vincent Lecours

Coffee Talk - Recent Research Progress in Geomorphometry in China

Recent Research Progress in Geomorphometry in China

Dr. Li-Yang Xiong
Nanjing Normal University, China

October 1st , 2025
8:00 MDT (UTC -6), 10:00 EDT (UTC -4), 11:00 BRT (UTC - 3), 15:00 BST (UTC +1), 16:00 CEST (UTC +2), 17:00 EEST (UTC +3), 22:00 CST (UTC +8)

Recording available in our YouTube channel

Bio: Dr. Li-Yang Xiong is a professor at the School of Geographical Science, Nanjing Normal University (NNU), China. He is currently responsible for managing NNU’s research in Digital Terrain Model and Digital Terrain Analysis. His main research interests include AI based terrain modelling, loess terrain feature characterization, landform evolution modeling, paleotopography reconstruction and geomorphological process mining. His recent work involves deep learning-based DEM reconstruction, geomorphology-oriented digital terrain analysis, and value-added digital terrain applications for geoscience. He also serves as Associate Editor for the journal Earth Surface Processes and Landforms and as an Editorial Board Member for International Journal of Geographical Information Science.

Abstract: In this talk, I will present some recent research achievements related to terrain modelling theory, terrain analysis method and terrain application in China. This terrain modeling theory focused on how we understand terrain knowledge and integrate it into AI methods for terrain reconstruction. In term of the terrain analysis method, the mathematical vector operation we believe should be highlighted in the research of Geomorphometry, which is suitable for multi-source data structure by considering the directional property of terrain parameters. Actually, this directional property should be made a full consideration for process- oriented geographical modeling and simulation. Lastly, I will show some terrain applications towards different typical geographical areas in China as well as global scale application.

PHD position in Italy

Dear colleagues,

I’m grateful if you can circulate information on this PhD opportunity in Italy. The potential candidates can contact me (strevisani@iuav.it) for further information. Here the main elements of the position:

Research topics: Predicting and supporting benthic and pelagic biodiversity through geomorphometry and machine learning

Link to the call (Italian and English): https://www.unipa.it/didattica/dottorati/dottorato-xli/bando-di-accesso-ciclo-41/

Position code [BIODIV.OGS]

Research headquarters OGS Trieste and University of Palermo

Funded by OGS - Istituto Nazionale di Oceanografia e di Geofisica Sperimentale

Key dates: Deadline: 7th August 2025 - 14:59 (Italian time)